
584 WRITING TSO (TIME SHARING OTN)COMMANDS IN FORTRRN I/i
(U) HARRY DIAMOND LABS ADELPHI MD A HRUSNER OCT 83
HDL-TM-83-20

UNCLASSIFIED F/G 9/2 NL

IlmllllllEllEllhlllllllEEE

ME

J i

2.26

11116 lowIi
11111 I25N

IONAL BUREAU 2

Iii!

MICROCOPY RESOLUTION TEST CHART

NATIONAL 8UI EAU OF STANOARDS-1963-A

.J

. ,.,,%,., . .. , ,. . . _,

I i* l * .l U. I ,I - ,r- ,..". .,a . , "'" . ". ' - -' r . - " - - -" " -

A4i,

01.1'

..in

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (Wflen Data Entered)

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORMJ
1REPORT NUMBER 2. GOVT ACCESSION NO, 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Sutbtitle) S. TYPE OF REPORT & PERIOD COVERED

Writing TSO Commands in Fortyan TcnclMmrnu
6. PERFORMING ORG. REPORT NUMBER

7. AUTNORfe) 6. CONTRACT OR GRANT NUMBER(*)

Arthur__________________________________ _________________________

9 . PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT, TASK

Harry Diamond Laboratories AE OKUI UBR

2800 Powder Mill Road
Adelphi,_MD 20783 _______________

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

* 4U.S. Army Materiel Development October 1983
and Readiness Command 13. NUMBER OF PAGES

Alexandria, VA 22333 64
14. MONITORING AGENCY NAME & ADDRESS(If different free Controlling Office) IS. SECURITY CLASS. (of this report)

UNCLASSIFIED

ISa. DECL ASSI FIC ATION/ DOWNGRADING
SCH4EOULE

1S. DISTRIBUTION STATEMENT (of this Repot)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Bloek 20. It different hiem Report)

1S. SUPPLEMENTARY NOTES

HDL Project: Y91EY1

S.4 19. KEY WORDS (Coninute on reverse aide If necessary and Identify by block nuc, bet)

TSO IBM
Commands Productivity
Fortran

\1 ArYNACT (Coftwe m reverse sileO nee..e and Ideattify by block number)

-~By having various assembler routines interface facilities not normally available in Fortran, TSO
(time sharing option) commands are easily written in Fortran. Major interface routines written at Harry
Diamond Laboratories are described in detail, with some helpful hints for using them. Minor routines,
including some written in Fortran, are briefly described. Some general useful techniques for writing
commands are also presented. Finally, three examples are given to illustrate the techniques: (a)
SYSOUT, written to provide a copies keyword for a sysout file, (b) READN, to inhibit printing a user's
response to a read (for, say, a password), (c) COMPRESS, for compressing a PDS (partitioned data set)
in place.

DDFCI~r 2p3 EDITION OF I PlOV 65 IS O9SOLETE UNCLASSIFIED
1SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

. 21

CONTENTS

Page

1. IN T R O D U C T IO N 5

2. THE MAJOR INTERFACE ROUTINES .. 6

2.1 Subroutine ATTACH 6
2 .2 S u b ro u tin e A T TE N 6
2 .6 S ub ro u tin e Q U I NT . .. 3
2 .3 S u b ro u tin e C O M A N D 7

, 2.4 Subroutine DYNALC........................... 7
P2.5 S u b ro u tin e P A R S E ... 11ii2 .6 S u b ro u tin e Q U IT 13

2 .7 S u b ro u tin e TS P TG T .. 13

3 . O T H E R U S E F U L R O U T IN E S ... 15

4 . U S E F U L T E C H N IQ U E S ... 18

5. EXAMPLES OF COMMANDS .. 19

6. CONCLUSIONS AND RECOM M ENDATIONS ... 23

D IS T R IB U T IO N 6 3

APPENDIX A.-MAJOR ASSEMBLER INTERFACE SUBROUTINES .. 25
APPENDIX B.- EXAM PLE OF COM MAND SYSO UT ... 45
APPENDIX C.- EXAM PLE OF COM MAND READN .. 51
APPENDIX D.- EXAMPLE OF COMMAND COMPRESS ... 57

"-- . TABLES

1. FORTRAN SUBROUTINES DESIGNED FOR SPECIFIC ALLOCATION FUNCTIONS 8
2. ALLOCATION FEATURES ALLOWED DYNAMICALLY BUT NOT ALLOWED IN JCL 10
3. COMMON COMBINATIONS OF CHARACTERS 12
4. O TH ER U SEFU L S U B RO U TIN ES .. 16

Accession For

NTIS GRA&I
DTIC TAB
Unannounced

Justificatio.

By

Distribution/

Availability Codes

Avail and/or - 1

Dist Special

1A 3

.................-. .o.* , -* .- * . ". . •* "

. .7.....1..7.- " 7 V

.1l

1. INTRODUCTION

The Harry Diamond Laboratories (HDL) Computing Center, consisting of a mainframe IBM
370/168 computer operating under multiple virtual storage (MVS), has had considerable success
writing TSO (time sharing option) commands in Fortran. All that is required are a few basic
assembler routines to interface various facilities normally available only to assembly program-
mers. With this capability, the usual advantages of writing programs in a high-level language ac-
crue: rapid evolution of programs, easy debugging, and easy maintenance. These features more
than offset the major disadvantages: more execution time and more memory are required than for
assembler programs.

The facilities to be described were slowly evolved over a period of several years. They were
used at first to help speed up the many system command lists (Clists) that had been written, by
having entire sections of Clist code replaced by a command to perform the equivalent functions.
Before too long, however, it was recognized that the entire Clist could be replaced by a Fortran
command provided certain interfaces were available; the Management Information Systems (MIS)
Office* began to develop these routines for that purpose. It was noted that large amounts of ex-
ecution time and resources could be saved as a result. A typical example, that of a foreground
compile of a Fortran program, reduced the time to call the compiler by a factor of 4; and since
allocations were made with the convertible attribute (to be described) and not unallocated, a sec-
ond use of this command in the same TSO session resulted in even greater savings.

The techniques to be described here are not limited to systems programmers installing
system commands for the user community. Any load module can be executed as a command in a
Clist using the TEST command:

TEST loadname CP
(command syntax)
RUN

or the HDL-written command, CMD:

CMD loadname =(command syntax)

, The resulting execution will generally be much faster than an equivalent Clist.

Most commands have the following general structure:

,SUBROUTINE statement
COMMON, TYPE, and DATA statements
PARSE statements
ATTEN statement for attention handling
Determination of which keywords are used, and performing tasks based on their values.
These include dynamic allocation of files, interactions with the user, calling other
commands, and attaching other programs.

Cleanup statements
QUIT statement to provide a return code
END

*The assembler routines were written by B. H. Audet of the MIS office, and Jane Schmitt, William Jacob, and
Walter C. Bodycomb of IBM.

.5

- * * . .
'4 ** .. .- 4-. -..

f-W 4-

2. THE MAJOR INTERFACE ROUTINES

The most important assembler interface subroutines that have been written are the following:

ATTACH-Executes any program from any other program, including a command.
ATTEN-Provides attention handling.
COMAND-Executes any command from another command and optionally receives alpha

information from QUIT in the called command. ,
DYNALC-Interfaces SVC99, the dynamic allocation services.
PARSE-Interfaces the TSO parser.
QUIT-Provides a return code to the caller and optionally transmits alpha information to

a calling command.
TSPTGT-lnterfaces the PUTLINE, GETLINE, and PUTGET facilities for communicating

with the terminal.

Appendix A describes these routines and their calling sequences, but some notes on using
the routines are described in sections 2.1 through 2.7. The notes should be read with appendix A

as a reference.

2.1 Subroutine ATTACH

ATTACH permits any program to be executed from any other program or command. It is
useful for calling compilers, utilities, or user-written programs.

When using ATTACH, it is generally useful to have the first argument, IOPT, set to 1, to
enable an attention to be intercepted by the command, for cleanup operations and to set a proper
return code.

The program being attached does not have to be in an automatic call library. Before
calling ATTACH, allocate the library without a member by calling DYNALC using verb code 1 and
key 85 to allow the system to select a ddname, which is returned to the program. It will be an
8-character name beginning with SYSO. The argument PGM in ATTACH is then specified with the
16 contiguous bytes consisting of the ddname followed by the program name. To be sure the pro-
gram exists as a member in the library allocated, subroutine MEMCHK (see sect. 3) may be called
as an intermediate step.

The PARMs that may be entered must be interpreted by the program being attached.
Compilers, for example, are generally written to allow two sets of parameters: the first to define
options to the compiler, and the second to define a set of nonstandard ddnames to be used in
place of standard ones.

2.2 Subroutine A TTEN

ATTEN provides attention handling for any program or command. The routine is called
at the beginning of the program or command. If attention is signalled by the user an attention argu-
ment is set. It must be periodically checked to see if attention was signalled. The user may cancel
attention control at any time by calling ATTOFF and reinstitute attention control by calling ATTEN
again, a useful feature for commands that have subcommands.

6

.-..-...--.... ...-... - -. -.. '..-..?.-... - - .'- " .- "-.-" ...- -". i .

*. ~ - ,". ..

,'.'.... .. . , -'... .,..-. " . . . -. - . .- ", . .
4," , , , " • - -,- "" ' "" "" ," " . S . .- ,-- - - - - - - - -'. -.-. . . -. a "-,', ' = - .- ,:=- " a -

. . _ ".V

Clist ATTN statements have priority over this routine. If the program or command is
called from a Clist, ATTN OFF should be in effect for the ATTEN subroutine to be recognized. If
two (or more) interrupts occur before the system responds to the first one, the program or com-
mand will give up control to the TSO processor.

Note the important restriction in the description of ATTEN (app A). An optimizing com-
piler that rearranges logic has no way of knowing the attention argument may be changed from
outside the program. To prevent shifting of statements, the argument should be placed in a COM-
MON statement. For example, the statements

LOGICAL AFLAG
.

AFLAG=.FALSE. (initialization)CALL ATTEN(AFLAG)

DO 10 T= 1,N
IF (AFLAG) GOTO 20
CALL DYNALC(etc.

10 CONTINUE

20 CALL QUIT(LC)

will result in the optimizer removing the statement checking AFLAG from the loop, since AFLAG is
not modified in the loop. (A really smart compiler will remove it altogether because it is not chang-
ed after its .FALSE. initialization.) To prevent this, add the statement:

COMMON /ATTN/AFLAG

Now the compiler cannot know the DYNALC does not have the COMMON block IATTNI, and
hence it assumes that AFLAG may change in the call to it. Therefore, the check on AFLAG will not
be relocated.

ATTEN should be called after the parsing statements (see subroutine PARSE) in a com-
mand, to permit a user to exit a command in response to a parsing prompt.

2.3 Subroutine COMAND

COMAND executes a command from another command, and transmits character infor-
mation back to the calling command if the called command supplies information (in an attempt to
simulate the Clist GLOBAL statement).

One blank is automatically supplied between the command name and the first keyword,
but additional spaces between keywords must be supplied as part of the CMDRGS. The example
in the description (app A) illustrates this procedure.

Note that some commands do not work (the CALL and EXEC commands, for example).

2.4 Subroutine DYNALC

DYNALC is an interface to SVC99, to make dynamic allocations, unallocations, con-
catenations, deconcatenations, and retrievals of information concerning existing allocations.

7

._; "- : . 4 . . : . ;.o °.,-. w . . . " . j 4

Much of the information contained below is meaningful only when supplemented with the informa-
tion in the IBM manual GC28-0627, OSNS2 System Programming Library: Job Management.'
Because of the complex nature of dynamic allocation, several Fortran subroutines were written to
perform certain allocation functions. All are described in detail in 'SYS1.PAGCAT' and easily ac-
cessible with the PAGCAT command. The routines are listed in table 1. More routines will be add-
ed as the need arises.

TABLE 1. FORTRAN SUBROUTINES DESIGNED FOR SPECIFIC ALLOCATION FUNCTIONS

Fortran routines Purpose
ALCMSG Provides an allocation error message. (Routine DYNALE is more general.)

* ALLC Allocates an existing dataset, performing checks generally made in commands and supplying error messages.
ALLCD Allocates a dummy file.
ALLCTD Allocates a terminal file.
ALLCT Allocates a terminal file.

ALLCW Allocates a temporary work file.
ALLCWD Allocates a temporary work file with a DCB.

CONCAT Concatenates existing datasets.
CONCTV Concatenates existing datasets when volumes are known
CREATE Creates a new dataset.
DELETE Deletes a dataset with dynamic allocation. (Subroutine DSSCR does not use dynamic allocation and is more

efficient.)
FREE Unallocates a file, or marks it not in use.

It is best to choose names for the texts (see app A) to correspond to the requested func-
tions, to make it simpler to interpret. For example:

CALL DYNALC (1 iIER,IERR.INFO,O,DSIN,DDPRTPWD,MEM, SHR,PERM)

contains the usual error return codes IER, IERR, and INFO, and supplies dynamic allocation texts
- DSIN, DDPRT, PWD, MEM, SHR, and PERM. Each text is defined in a DATA statement that

. * specifies the key, #, LEN, and PARM. (LEN and PARM are omitted if # is 0; LEN and PARM are
repeated # times if # > 1.) Because key, #, and LEN are all 2-byte integers, it is most convenient
to use INTEGER*2 as the type. Thus, the above example might have DSIN look like

INTEGER*2 DSIN(8)/2,1,10,'SY','Sl','.P','PL','IB'/

where

key = 2 (defines a dataset name),
.# = 1 (one name to be defined),

LEN = 10 (10 characters in the name), and
PARM = SYS1.PPLIB (the name).

Various keys to define allocation attributes are defined in the aforementioned IBM manual,
GC28-0627.1

The above example uses DS as part of the dataset name text to suggest that it is just that. All the
names used suggest that a dataset name specified by DSIN is to be allocated with a member
(MEM text) using a ddname specified by the DDPRT text, with a password specified (PWD text),
status SHR, and using the permanently allocated attribute (PERM text). In this way, the statement
is more readable and easier to debug and maintain.

,OSIVS2MVS System Programming Library: Job Management," IBM Manual GC28-0627, IBM Corporation,

Poughkeepsie, N. V.

8

-~ C W~ -. W. --..

=B

NTEXTS=O (where NTEXTS is normally the number of texts) can always be used in a
general allocation call. This forces DYNALC to check all texts supplied. Texts may be ignored by
making the key=O if they are not wanted. For example, in the above call, MEM and PWD may be
defined by:

INTEGER*2 MEM(7),3.1,5" ' '/.PWD(7) 80,1.51'. '

with the member length, MEM(3), and value MEM(4)-MEM(7), as well as the password length,
PWD(3), and value PWD(4)-PWD(7) stuffed into the positions if the user specifies them in the com-
mand syntax. If he does not specify either or both, the program can assign MEM(1)=0, or
PWD(1)=0, or both. Thus, the call to DYNALC is still valid.

- '- Although INTEGER*2 is the most convenient specification for texts, it is not necessary.
For example, to specify units of space in tracks, we may use

INTEGER"-2 TRACKS(2),7,0,, or
INTEGERP/4 TRACKS., Z00070000/,
INTEGER"4 TRACKS/1792/

In all cases, the four consecutive bytes on TRACKS contain hex 00070000, defining key=7 and
#=0.

Several allocation features allowed under JCL are not allowed dynamically:

(a) DDnames of JOBCAT, STEPCAT, JOBLIB, and STEPLIB,

(b) Keyword parameters AMP, BURST, CHARS, CHKPT, DDNAME, DLM, DSID,
FLASH, and MODIFY,

(c) Positional parameters *, DATA, and DYNAM,

(d) Selected subparameters of keywords:

Group values of COPIES,
CYLOFL, NTM, and RKP of DCB characteristics, as well as a ddname reference
to a previous step,

PASS of DISP,
Reference to ddname ISAM area name of DSN,
ABSTR specification of SPACE,
DEFER specification and AFF of UNIT,
RETAIN specification and REF=ddname of VOLUME,

On the other hand, several allocation features not allowed under JCL are allowed
dynamically (for IVERB=1), as shown in table 2.

Of the above, the permanently allocated and convertible attributes require clarification, because
the concepts do not exist for JCL allocations.

The permanently allocated attribute is used by the TSO ALLOCATE command and all
allocations made by JCL for batch jobs. Besides other features, this means that the system can-

".. "- ,- ." .. , . ~ " • ' _ :

°-'i.7. 71

not unallocate the resource to satisfy another allocation request to meet the control limit (set by

DYNAMNBR of the logon procedures-75 using most HDL logon procedures).

TABLE 2. ALLOCATION FEATURES ALLOWED DYNAMICALLY BUT
NOT ALLOWED IN JCL

Key (decimal) Feature

80 Password specification
82 Permanently allocated attribute
83 Convertible attribute
85 Ddname return specification (if you let the system select a ddname)

. ../86 Dsname return specification (it you let the system select a dsname)

87 DSORG return specification
93 Volume serial return specification

The convertible attribute means that the system has some flexibility to reuse the alloca-
tion if it is marked not in use (either by verb code 2, key.8, or because a command ends). The
system will not reuse the allocation again unless only certain parameters are different from the
new request. These are: ddnames, member name, status, normal and conditional dispositions,
space unallocation at close, input and output only, DCB attributes, password, and the permanent-
ly allocated attribute (which may also be specified at the same time). In addition, any allocation
not in use that does not have the permanently allocated attribute is eligible for automatic unalloca-

-. tion to satisfy the control limit.

A good practice is to allocate with the convertible attribute (key 83), letting the system
select a ddname (key 85) whenever possible. Utilities and compilers have provision for specifying
ddnames other than standard ones. Existing allocations with the convertible attribute then will be
used by the system, if possible, thereby saving much processing. Such allocations need not be
freed at the termination of the command, so they may be reused if needed. However, datasets
that may be required for exclusive use in a batch mode, or by other users, should be freed.

An existing allocation that does not have the convertible attribute cannot be chosen for
an allocation specifying it. Therefore, allocate specific ddnames (SYSIN, SYSPRINT, etc.) with the
permanently allocated attribute and without the convertible attribute. In this way, a system-
selected ddname will always begin with "SYSO" and contain eight characters; no conflict will
arise in any selection.

Use both the convertible and permanently allocated attributes for dummy and terminal
files with system-selected ddnames. Without the permanently allocated attribute, they are
automatically unallocated when marked not in use (at the conclusion of the command). The same
is true for work files for which no dsname is specified.

An existing allocation may be reused even if it has only the permanently allocated at-
tribute. Thus, if you specify the equivalent of

ALLOC DD(SYSPRINT) DS(*)

and SYSPRINT is already allocated to the terminal, the allocation will be successful. For this
reason, a "REUSE" keyword should be simulated as follows, with a specified ddname:

(a) Attempt allocation,
(b) If successful, go to (h),

10

-- o . --. - - . g -

• . •" . '• " " J -..-.
- •

." --.. . . .'".. .,." ". "" , "- f - " r " " " - -"" * ;*.

,-i- *. ,. . ." --..

(c) If unsuccessful, and the reason code is 1040 (ddname in use),
go to (e),

(d) Error message and terminate,

(e) Free ddname,
(f) If successful go to (a),
(g) Go to (d),
(h) Allocation successful-continue.

In this way, an existing allocation is used even if it only has the permanently allocated attribute,
but only if it is not in use and no parameters need be changed. The alternate way (free ddname
and allocate ddname to the terminal), may free an existing allocation and is less efficient.

Deconcatenate concatenated datasets (using IVERB=4) in a cleanup operation before
command termination, to make the component allocations available for future use.

Specify the volume (key 16) in a dsname allocation. If not supplied by the user (or com-
mand), obtain the volume first from the catalog with subroutines DSORG, RECFM, LOCATE, or
LOCAT6 (see sect. 3). This protects users who work with cataloged and uncataloged datasets with
the same name. If the user allocates the uncataloged dataset first by specifying a volume, and if
the cataloged dataset without volume is allocated second, the system gets the volume for the se-
cond allocation from the first allocation and not from the catalog. This is not what the user wants
to happen.

2.5 Subroutine PARSE

PARSE allows command writers to use the major elements of the TSO parser, including
- prompts, error detection, recognition of mutually exclusive keywords, dataset names with

members and passwords, keyword parameter abbreviations, etc. It is the most difficult of all the
interfaces to describe, because of the additional seven entry points:

PARDSN-specifies name(s) of dataset(s), with member(s) and password(s) for a
parameter.

PARPOS-specifies character value(s) of a parameter.
PARDEC-specifies binary (integer) value(s) of a parameter.

PARSTR-specifies a string value for a parameter.
PARKEY-identifies the variable to change if a keyword is used, i.e., defines a keyword.
PARNAM-specifies keyword names.
PARSUB-identifies the keyword for which the next call to PARDSN, PARPOS,

PARDEC or PARSTR applies.

The order of the calls to the different entry points is important. In the following we use the notation

VALUECALL for any of PARDSN, PARPOS, PARDEC, or PARSTR. The order is as follows:

(a) One VALUECALL for each positional parameter of the command.

(b) One PARKEY call for each set of mutually exclusive keywords, followed by a set of
PARNAM cals defining t -,e keyword names, and if the keyword has a value, an identifying number.

%,

' .-. . , ,C', . . -'. .,. '. - . .

a
-..- • .-. -. --.. -

* PARKEY and a set of PARNAM are repeated until all keywords have been specified. The examples
* in appendices A through D should clarify this procedure.

(c) A PARSUB call with the identifying number specified in PARNAM above, followed
by one or more VALUECALLS to set the values. PARSUB and VALUECALLS are repeated until all
values are accounted for.

(d) PARSE, which sets all the values. The crucial values are
IWHICH (of PARKEY) to tell the command which keywords were specified by the
user.

The first argument of PARDSN, PARPOS, PARDEC, and PARSTR to tell the com-
,. mand values of keywords specified, if those keywords have values.

All items are not necessarily involved. If there are no keyword parameters, items (b) and (c) are
not needed. If no keywords have values, item (c) is not needed. If there are no positional
parameters, item (a) is not needed. The use of these routines will become clearer during the
discussion of examples in section 5.

The string entries in the calls to various entry points are self-defining strings in which the
first and last characters are identical and the character is not used within the string. PARSE strips
away those two characters, leaving the remaining as the string entered. Thus, no length variables
need be supplied for the strings.

Length variables are needed for values that users supply, and are available in the argu-
ment LENS (see app A) for all entry points. By using IOPT > 15, the lengths are assumed IN-
TEGER*4 variables. This is generally more convenient because the use of other subroutines (e.g.,
for error messages) requires INTEGER*4 variables. However, INTEGER*2 is sometimes useful for
stuffing the value directly into the length field of a dynamic allocation text.

If "*" is entered by the user in a request for a dataset name (subroutine PARDSN), the
dataset prefix is not left-appended to it, even if requested, and its length is returned as 1.

When using entry PARPOS for obtaining values of keywords, the combination of MAXL,
IFIRST, and IOTHER defines the maximum number of characters to be entered, the type of the
first character (any, alphabetic or national, numeric, alphabetic only, and alphabetic or numeric
only), and the type of the other characters. Combinations are shown in table 3 below with the
numeric designations as described in appendix A. The JCL manual usually defines legal values forother parameters (FORM name, FCB, etc.)

TABLE 3. COMMON COMBINATIONS OF CHARACTERS

Entry MAXL IFIRST IOTHER

Ddname 8 1 3
SYSOUT destination 8 3 3
Disk volume* 6 3 3
Clist variable name 31 4 5
Member name 8 1 3
Password 8 3 3

*Volume characters can include a hyphen and other special
characters, but these designations are not used at HDL.

12

. ,. " " " - i-,. " - -' ' "- . -. " -- . - . - . . .•
-' ' ~~~~....-.......... •-- '- .- ,. -..... ,. "-"='-'.

W7, .--; -;-7,

mI

2.6 Subroutine QUIT

QUIT provides a command with a return code that can be checked with &LASTCC in a
Clist. If, however, the command is called by another command, QUIT provides the return code to
the calling command, and can also provide character information to that command. This is useful
to prevent recalculation of important variables. For example, the COBOL compile command, CVC,
provides the name of the object module to the compile and link command, CVCL, which then can
more easily call a link command. The entire process is an attempt to simulate a Clist GLOBAL
statement.

The address of the block of character information is stored in the register normally
reserved for return codes, which are useful in Clists to control the flow of commands by checking
LASTCC. For normal operation from a Clist or from TSO, the return code should be in this register.
A procedure was devised to insure that the return code is in the register if the command was not
called from another command as follows.

Commands that are expected to return character information to a calling command are
given an alias (CVC# in the above example). Since the name by which a command is called can be
picked up by the parser (subroutine PARSE has an optional argument for this), it is a simple matter
to determine which form of the QUIT subroutine to use. The alias name is always used when a
command is called by another command, and it is expected to return information to that com-
mand. Thus, the call

CALL COMAND(3,IRC,'CVC# ',RTNLEN,RETARG, ...)

alerts the CVC code that return character information is expected. The CVC code has

LOGICAL*1 RETARG(174)
INTEGER*4 LARG'174,/
REAL*8 CMDNAM, NOPASS / CVC#/

CALL PARSE(IER.CMDNAM)

IF (CMDNAM.NE.NOPASS) LARG=O
CALL QUIT (IRC .LARG .RETARG)

o1:..
Hence, LARG is not set to 0 for the call to QUIT, so the information is returned to the calling com-

mand. With this code, if CVC# were called in a Clist,

CVC# dsname

the return code for checking LASTCC would be incorrect.

2.7 Subroutine TSPTGT-I
TSPTGT allows commands to make nearly full use of the PUTLINE, GETLINE, and

PUTGET facilities to write and receive messages from the terminal. This includes

(a) Message identification (MSGID) that is subject to the MSGID/NOMSGID
characteristics of the user's profile. HDL commands have not used this feature.

Va, .13

%." --.. .. o

.4 • . - . .

(b) Multilevel messages, each of which will be followed by a plus ("+"). A higher level
message is displayed if the user responds with a question mark ("?").

(c) Capability to fold input or output to upper case or leave it as is.

(d) Write or receive messages subject to a MSG/NOMSG and PROMPT/NOPROMPT
Clist CONTROL environment.

(e) Inhibit printing the response of a user PUTGET message.

(f) Inhibit a carriage return after printing a message.

(g) Sound the audible alarm (BEEP), subject to MSG/NOMSG Clist CONTROL, or not.

Item (e) is available only in the PUTGET facility, which requires a CONTROL PROMPT to be active
in the Clist. For all other situations, it is generally more convenient to use the PUTLINE and
GETLINE to write a message and receive an answer. Two subroutines were written to simplify the
calls to TSPTGT:

TSPUT-an assembler routine to interface the PUTLINE facility (by calling TSPTGT).

TSGET-a Fortran routine to interface the GETLINE facility.

These routines have two fewer arguments than TSPTGT and are easier to use.

The facility uses the self-defining string notation described by PARSE for receiving
strings without the length specification. However, a length and a string (two arguments) may be
optionally used and both may be intermixed in one call. Messages can be built up on several calls
by terminating the call with the argument -1. For example, the calls

CALL TSPTGT (IRC,1.0,'/ /', LDS. DS, -1)
IF (IMEM.NE.0)

CALL TSPTGT (IRC.1,O,'/(i'. LMEMMEM, '/)/',-I)
CALL TSPTGT (IRC,1,0,'i;'' WAS GENERATED,'')

insert a member name, MEM (with length LMEM), with parentheses in the message (LDS is the

length of DS, the dataset name):

'dsname' WAS GENERATED

to become

'dsname(member name)' WAS GENERATED

14

%'S

'S *S* - .

,. . .-. ".-

7,;

if the member name exists (IMEM.NE.0). Thus, the facility is very user-oriented, not requiring stuff-
ing of lines, keeping track of line lengths, etc. The third argument determines whether or not
beeps are sounded, whether MSGID's are included, whether the message is subject to a Clist
CONTROL NOMSG/MSG environment, etc.

The GETLINE facility does not require CONTROL PROMPT to be active in a Clist where
the command is used. In general, the prompting is always desirable, so that GETLINE is con-
siderably more advantageous than PUTGET, which does require the CONTROL PROMPT. The
most common usage would be

LOGICAL*1 AREA(20)

CALL TSPTGT(IRC,1,80,'iENTER DATA,"')
or

CALL TSPTGT(IRC,1,112,'/ENTER DATA: /')

(to inhibit carriage return), followed by

LEN=20
CALL TSPTGT(IRC,2,40, AREA.LEN)
IF (LEN) 10, 20, 30

C RETURN IS NEGATIVE
10 IF (LEN. EQ. -9) GOTO ... (attention returned)

IF (LEN, EQ. -8) GOTO ... (more than 20 characters
were entered)

(write error message)
GOTO ... (transfer to execution after error)

20 ... (CARRIAGE returned only, no data input)

GOTO . .
30 ... (1-20 characters were entered and are stored in AREA)

In the above, the 80 in the TSPTGT call sounds an alarm and treats the string as data (it is printed
in a Clist even if CONTROL NOMSG is active). The 40 in TSPTGT folds the input to upper case and
gets the input from the terminal. In a Clist, the call to the command using this code could be
followed by

DATA PROMPT
(response)
ENDDATA

even if CONTROL NOPROMPT is in effect. If not followed by the DATA PROMPT statement,
responses will be expected from the terminal.

3. OTHER USEFUL ROUTINES

Other subroutines were developed as they were needed, even for esoteric applications. Table
4 describes the name of each routine, the language each is written in, and its purpose. All of
these routines have catalog files in 'SYSI.PAGCAT', which may conveniently be listed with the
commands PAGCAT or PAGCATFS (a full-screen version) on TSO.

15

-p o . . ,

TABLE 4. OTHER USEFUL SUBROUTINES

Name Language Function

ABEXIT Assembler Sets up an error exit for system abends There is also an entry point, ABCNCL to cancel it
ACFRET Assembler Returns information from the user's ACF logonid record.
ACTIVE Assembler Determines whether a given job name is currently executing. Used mostly to see if the System 2000 multiuser job is

active.
ACTNO Assembler Returns the user's account number.
BEEP Assembler Sounds an audible alarm of 3270-type terminals.
BEEPC Assembler Sounds an audible alarm of 3270-type terminals, subject to the Clist MSG/NOMSG environment.
BITFL Assembler Flips a bit.
BITN Assembler Sets a bit ON.
BITOF Assembler Sets a bit OFF.
BITSET Assembler Sets a bit ON or OFF.
CATINF Assembler Returns catalog information Later superseded by the faster CTINF.
CHFIL Assembler Fills an area with a character.
CHMOV Assembler Moves a string from one area to another.
CKDSO Assembler Returns users/jobs currently allocated or enqueued to a given dataset and their statuses.
COMBLD Fortran With entry points COMBLN and COMQUO. Rebuilds a syntax line for use in calling one command from another in

subroutine COMAND.
CTINF Assembler Returns catalog information: dataset names, volumes, and units.
C3270 Assembler Clears a 3270-type screen.
DATE Assembler Returns today's date in the form MM/DD/YY
DATEB Assembler Returns a date in the form 07 JUL 1981.
DATEJC Fortran Converts a Julian date string to the form MM/DD/YY.
DESTCK Assembler Checks the validity of a remote destination. Useful to check user's entry of a destination.
DFDCB Assembler Returns the editor default DCB specifications for a dataset type. Useful to determine these from a name only.
DISKSL Fortran Finds the user disk (USER01-15) that contains the largest number of free contiguous cylinders. Aids in disk

selection.
DMPFMT Assembler Formats a line of dump data.
DRCTRY Fortran Determines the number of directory blocks allocated to a PDS, and the number used. However, it is more efficient

to use MEMRED if done while reading member names of a PDS.
DSATTR Assembler Returns selected VTOC information for a dataset.
DSCB Assembler Returns all VTOC information for a dataset
DSKDEV Fortran Determines the device type for a given mounted disk.
DSKLST Fortran Selects from an input list the name of the disk with the largest number of contiguous free cylinders available.

Uses SRO010.
DSORG Fortran Returns a number from which the DSORG of a disk datasel can be found. Uses DSATTR and contains that output in

common. Also provides error messages.
DSSCRU Assembler Scratches, uncatalogs, or both scratches and uncatalogs a dataset.
DYNALE Assembler A routine callable after a failed allocation with DYNALC, interfacing the DAIRFAIL program for error messages.

Uses the PUTLINE facility.
DYNALM Assembler A routine callable after a failed allocation with DYNALC, interfacing the DAIRFAIL program for error messages. The

error messages are not printed, but stored in the calling program for disposition by the user.
DYNALW Assembler A routine callable after a failed allocation with DYNALC, interfacing the DAIRFAIL program for error messages.

Uses the WTP (write-to-program) facility. Batch users will find such messages in the JES-2 job log.
EDITX Assembler Converts an integer*4 value to character format, right-justified, and blanks leading zeros.
EDITZ Assembler Converts an integer*4 value to character format, right-justified, and inserts leading zeros.
ELTIME Assembler Computes elapsed CPU or task time.
FASTIO Assembler Performs unformatted I/O to any sequential file with fixed, variable, or undefined length records. This routine is the

bulkwark read and write routine to or from files. It is considerably more efficient than Fortran reads and
writes and its compatibility across record formats makes it more convenient in many applications.

FCVxxx Assembler A series of conversion routines that links with routines in the Fortran library.
FOLDUP Assembler Translates character data to upper case.
FSORT Assembler A sort interface with the SORT/MERGE utility.
FSxxxx Assembler A set of full screen routines for use in creating menu-driven programs and commands. Useable only on 3270-type

terminals and, as such, has limited use for general-purpose commands.
GETCSV Assembler Gets the value of a variable from a Clist.
GETPRM Assembler Supplies either the date, time. userid. dataset prefix, logon procedure name, or default sysout destination.
GETUCS Assembler Describes the address, name, device type, mount attribute, use attribute, and allocation status for each disk in the

system, and the total number of disks.
GTSIZE Assembler Returns the logical terminal line length and the number of rows if the terminal is a screen
IBIT Assembler Tests a bit in a variable to see if it is set or not.
ICSORT Assembler Performs a shell sort of an array of records stored in memory.
IDAY Assembler Determines the day of the week for a given day.

16

"," ".''.2 ,i,:," .'.2" .' ' . : ,. ..- '-.'-,' '...: - . i.' , i." -iY '.".. .2- - :.:. '- ... "" "

TABLE 4. OTHER USEFUL SUBROUTINES (Cont'd)

Name Language Function

JOBCHR Assembler Obtains an alphabetic character (and its corresponding number from 1 to 26) for use in names
JOBINF Assembler Returns information about a user-supplied job name: the number (or numbers) and its status Commands using

JOBINF must be linked with AC=1 and the command name must be in the authorized command list, CSECT
IKJEFTE2 of load module IKJEFT02

JOBNO Fortran Calls JOBINF and supplies the job number of the most recently submitted lob. This routine uses a specific algorithm
if there is more than one job number for a given job name. It is useful for supplying the user the job number for a
batch job written directly to the internal reader.

JOBTYP Assembler Determines if current command is being orocessed in foreground, background, or as a console started task For
commands, however, it is usually just important to determine foreground or background Since the default destina-
tion of a background job is null, this information is deducible from routines TSUDFI or GETPRM

JULIAN Assembler Provides today's Julian date.
LOCATE Assembler Locates the volume on which a given dataset resides.
LOCAT6 Assembler As in LOCATE, but the volume argument requires 6 bytes instead of 8.
LSCAN Assembler Scans a specified character string for a given substring
LSTCM Assembler Logical string comparison.
MEMCHK Assembler Checks a given PDS to see if it contains a given member.
MEMDEL Assembler Deletes a member of a PDS.
MEMINF Assembler Returns information about members in a PDS names, lengths, and TTR's
MEMRED Fortran Also returns the information in MEMINF, but by reading the directory one name at a time. It is not necessary.

therefore, to dimension the names, lengths, and TTR's: large datasets can be processed. MEMALC (to allocate
the PDS) and MEMCLS (to end reading) are entry points.

OPEN Assembler Opens and closes a dataset. Useful to provide an end-of-file mark or to process an RLSE feature after
allocating MOD.

PASSCK Fortran Determines the password protection status of a dataset. Similar to DSORG.
RDVTOC Assembler Reads the VTOC of a disk, one dataset at a time.
RECFM Fortran Returns a number from which the record format of a dataset can be found. Similar to DSORG.
RECMSG Fortran Displays an error message after RECFM returns an unwanted number.

* . REGSZ Assembler Returns the logon region size in bytes.
RENAM Assembler Renames a dataset.
SETCSV Assembler Sets a defined Clist variable to a new value.
SR0010 Assembler Finds the amount of free space remaining on a specified DASD volume.
STGxxx Fortran A set of routines to perform string manipulation including conversion of character to numeric data and vice versa,

blanking, moving, etc. These routines use CHFIL, CHMOV, LSTCM, and LSCAN when possible, for efficiency, and
to provide error checking.

SUBMT Assembler Writes a file to an internal reader.
TIME Assembler Provides the system time of day in the form HH:MM:SS.
TIMEB Assembler Provides the system time of day in the form HH:MM:SS.TH.
TPIO Assembler Reads from and writes to a terminal. Unlike TSPTGT. this routine cannot be subjected to a Clist CONTROL

MSG/NOMSG environment and was used prior to that routine. (TPIO can be used in a program not executed as a
command).

TPUTAS Assembler Writes to the terminal without a carraige return, and can be used in programs not executed as a command For
a command, TSPTGT is more versatile.

TSGOPN Assembler and its entry points TSGGET, and TSGCLS-A set of routines that enable reading from allocated files that need not
be Fortran files. Very similar to FASTIO.

TSHEX Assembler Converts data to hexidecimal format suitable for use in routines that use self-defining delimiters (such as TSPTGT
or TSMSG).

TSINT Assembler Converts INTEGER*4 integers to character format with self-defining delimeters, suitable for use in TSPTGT or
TSMSG.

TSMSG Assembler Writes a message to the terminal. Unlike TSPTGT, it cannot be subjected to a CONTROL MSG/NOMSG environ-
ment.

TSPFLD Assembler Retrieves the parameters of the command. This routine is useable if you wish to do your own parsing in the com-
mand (instead of subroutines PARSE). It takes much less memory but just presents the parameters as specified
If is useful if there is one keyword.

TSPOPN Assembler With entry points. TSPLEN, TSPPUT. and TSPCLS writes to an allocated file. Very similar to FASTIO. with the added
advantage that it uses self-defining delimiters to make it easy to build up messages over several calls If the
LRECL is not defined. TSPOPN also sets DCB values (LRECL=80, BLKSIZE=3120, and RECFM=FB)

TSUDFI Assembler Finds the userid, prefix, and default destination of the user If the userid is null (as it would be in a batch mode). it is
set to the account number. If the prefix is null, it is set to the userid. Similar to the functions of GETPRM

UNITS Assembler Returns a list of DASD names. Can return all names, only on-line names, public device names, or storage device
names.

WAIT Assembler Places the active task in a wait stale for the specified number of microseconds Useful to pause a while before
retrying an allocation.

WTO Assembler Writes a line of text to the operator's console
WTOR Assembler Writes a line of text to the operator's console and waits for a reply
ZEDIT Assembler Converts binary data to hex.

17

..,--- -

- - -,o -. .

4. USEFUL TECHNIQUES

Many useful techniques evolved while the many commands that now exist in the HDL com-
puter environment were being written. Some have already been described during the discussion
of major interfaces in section 2. Below are listed additional techniques found useful.

(a) Add a SUBROUTINE statement with no arguments at the beginning of the command.
This eliminates the need for having file FT06FOO1 allocated for execution errors. Without the
SUBROUTINE statement, users who do not have file FT06FOO1 allocated cannot execute the
command.

(b) Decide carefully on the syntax of the command, using keyword names to suggest their
functions. It is also useful to try to arrange names to take advantage of the abbreviations the
parser permits. For example, two keywords called KEYWORD1 and KEYWORD2 would have to be
completely spelled out by the user to avoid ambiguity. There are usually alternate names that can
be used to allow fewer user keystrokes. Keywords with a few possible values should be split into
mutually exclusive keywords without value (START/NOSTART instead of START (YES or NO)). Oc-
casionally, both forms might prove convenient. In the HDL PR command the sysout class was
represented by

CLASS('SYSOUT'), PRINT/PUNCH/HOLDiNIGHTPP.IVACYLOWER

with the latter six mutually exclusive keywords available for the most frequently used 'SYSOUT'
-:: -values A,B,H,N,P, and L.

The importance of the syntax chosen should not be underestimated.

(c) HDL has adopted simple character standards for dataset dispostion information in con-
nection with a keyword:

A - Print at a remote station.
B - Punch at a remote station.
D - Allocate to dummy.

E - Print an edited dataset.
H - Hold in the output queue.

~1N - Make no allocation (has been preallocated).
P - Store in a private library, the name of which is generated from other syntax

information.
T or * - Print at the terminal.
W - Store on a system-selected disk (usually a storage or work disk that is scratched at

the end of the day).

Thus, if PRINT represents a keyword controlling the dispositon of a SYSPRINT dataset, PRINT(A)
means print it at a remote station (which may also be specified by a DEST keyword). Not all the
possibilities are permitted in every case, but consistent use is important to users.

(d) Avoid using Fortan files generally, if possible. Subroutines FASTIO, TSPOPN, and
TSGOPN all have the means to read and write with nonstandard files. If an interface requires a

18

- 4 --. 18

l'i: :::i :::::: :::::: ::::::::::::::: :: :: ::::: :... ::.. :: .. :....:::., .. :o -; :- .:::::- . ::: . .- .- -

Fortran file (such as subroutines FSORT), choose one that does not interfere with any the user
may have allocated. Subroutines DYNALC with verb code 7 may be used to check if a given
ddname is allocated or not. In this way, a command need never unallocate a file that the user may
have allocated for some other purposes.

(e) As mentioned earlier, let the system pick a ddname whenever possille to avoid user
conflicts. IBM compilers, utilities, and other program products have default ddnimes for needed
files, but have provision to specify alternate names. If the system picks the ddname, specify the
convertible attribute. If a specific ddname is required, specify the permanently allocated attribute
without the convertible attribute (exactly how the TSO ALLOCATE command would do it). In this
way, a system-selected ddname will begin with "SYSO", because the system will never pick an ex-
isting allocation that does not have the convertible attribute if you specify that it will have it. No
conflicts can result if this is consistently used.

(f) Avoid unallocating a file at cleanup if its disposition does not conflict with other users'
needs. This applies to all allocations, and is reasonable because most HDL logon procedures use
DYNAMNBR=75 (i.e., 75 allocations with the permanently allocated attribute can exist at one time
in addition to those specified by the logon procedure). In this way, an allocation may be reused, if
needed, minimizing system overhead. The biggest problem arising from this procedure comes
from users accessing a dataset in batch and TSO concurrently, using conflicting dispositions. If a
dataset has been allocated with OLD, MOD, or NEW in the foreground, it cannot be allocated in
the background. Thus, if a user creates a dataset with the ALLOCATE or CREATE commands and
tries to write into it with a batch job without remembering to unallocate the dataset in TSO, the
conflict may cause the operators to cancel the batch job.

Allocation of a ddname used at logon should be reallocated by a command because users
may expect that allocation to be in force for subsequent work. For example, SYSPRINT is
allocated to the terminal at logon for sophisticated users to run utilities. If changed by a com-
mand, such users may be taken by surprise when no output is printed at the terminal.

(g) Provide clear and accurate error messages. This will prevent angry frustration at not on-

ly having a command fail, but also getting a cryptic message. Some subroutines have built-in
messages (ALCMSG, RECMSG, ALLC). It is important to try to anticipate, intercept, and explain
possible user and system errors.

A common error source is allocation of a dataset with member for input. The allocation will
succeed if the dataset exists but the member does not. An error will occur only when the attempt . -

to open the dataset is made. Use subroutine ALLC to make necessary checks and provide
resulting messages.

(h) Commands that do not require any cleanup and are not likely to have their return code
checked for any reason by a user need not have an attention handler. If attention is hit in that --.

case, the command ends immediately (and no return code is set). If an attention handler is used,
check the attention flag often so that exit will be affected quickly after it is signalled.

5. EXAMPLES OF COMMANDS

Appendices B, C, and D contain three examples of commands to clarify some of the concepts
described. All were written for IBM's H Extended compiler and are in use at HDL.

19
_A&hE:

- ° " ° . .• o -. ° - . . • .. -

In appendix B, the SYSOUT command is listed, slightly modified for use in this report. It was .1
primarily written to provide a COPIES keyword, sadly lacking in the IBM ALLOCATE command.

Two other keywords also not available in the ALLOCATE command were added:

CLOSE- unallocates the file at close.

FORM-permits a form name to be specified.

All the allocation texts are initialized in the INTEGER*2 type statement. Note that the ddname is a
required parameter; the call to set it comes first (a PARPOS call), with other keyword names defin-
ed next. COPY is defined as an alias to COPIES. HOLD and NOHOLD are mutually exclusive.
Limits for values for those keywords having value can be found in the JCL manual. The USING
keyword must be set to a ddname because the ATTRIBUTE command sets up a dummy file with
fixed DCB attributes. Hence it is a ddname. The form name for the FORM keyword can have at
most four characters, any of which can be alphameric or national. An integer value is entered for
COPIES. The parsing call

CALL PARDEC(COP, 1)
COP= 1

initializes the number of copies to one if the user does not specify the keyword or specifies the
keyword without value. Character data, however, must be intialized after the call to PARSE. "

As it stands, an invalid number (say "A") entered would cause the prompt
S-4I

INVALID NUMBER - REENTER

because "NUMBER" is the invalid message default. To get

INVALID NUMBER OF COPIES REENTER

the proper call would be

CALL PARDEC(COP,'/NUMBER OF COPIES/',1)

To cause a prompt for the COPIES keyword when no value was supplied, we can use

CALL PARDEC(COP,1.1,','NUMBER OF COPIES/')

or

CALL PARDEC(COP,'/NUMBER OF COPIES/',1,1,'/NUMBER OF COPIES/')

followed by the initializing statement for COP if the keyword is not used at all.

Note that special handling is required because COP must be a 4-byte integer in the call to
PARDEC, but only the last byte is needed to stuff into the COPY(4) text. The method chosen was to
equivalence COP with an INTEGER*2 array COPIES with dimension 2. Hence, COPIES(2) contains
the last 2 bytes of COP. To move the binary value entered from byte 4 of COP to byte 3 of COP, the
statement

20

COP=COP-256

is used. Finally, the statement

COPY(4)=COPIES(2)

stuffs the 8 binary bits correctly. Other methods could have been used. This technique is impor-

tant for decimal values involving an odd number of bytes in the length (for primary and secondary
space, directory blocks, etc.) as required by the allocation texts.

'i The rest of the command is straightforward, with heavy emphasis on good error messages.
The REUSE keyword simply frees the ddname because it is unlikely the filename is associated

" "with a sysout file.

Appendix C is a listing of the READN command, which uses TSPTGT in the print inhibit mode.
It is intended to enable users to prompt for passwords in a Clist, and use the information within the
Clist. The crucial routines are TSPTGT with IEC=3 (PUTGET facility, because GETLINE does not
have a print inhibit mode), and SETCSV to set a Clist variable.

Before calling any parsing routines, subroutine GETCSV is used just to determine whether the
user is in a Clist. An appropriate error message is sent if he is not. The first parsing call determines
which Clist variable is to be set to the input. This is a required parameter. Since the PUTGET facili-
ty requires some string to write, the first call to PARSTR has a blank character as a default, so that
LMSG(1) will never be zero. Thus, OPT=18 is specified to make at least one string required, but
with a default.

Four other calls to PARSTR in a loop are for optional messages (IOPT=16 just defines the
length LMSG to be INTEGER*4) the user may want to include a message sequence before the
prompt response. Optional positional parameters are permitted for strings.

RETURN/NORETURN are the only optional keyword parameters.

If the parse is successful, another call is mode to GETCSV to check if the Clist name supplied
by the user is in the Clist, and how many characters it has been set to. The SETCSV routine to be
used later requires the variable to be set to have been defined in the Clist to at least the number of
characters its new value is to have.

SJ

Next, TSPTGT is called to provide the messages and to receive an answer. IOP=94 if

RETURN was specified or defaulted, or 126 if NORETURN was specified. The 94 includes

Value Meaning

64 to sound a beep to alert the user that input is needed.
16 to inhibit printing the user's response.
8 to fold input to upper case.
4 to fold output to upper case (not needed because Fortran stores all

alphabetic characters in upper case).
2 to request a multilevel message. The user can type "7" to get more information.

94 Total
k .

21 J1

- . .

4, , " ,- . • -. 2 - - .

Finally, the SETCSV routine is called to set the Clist variable. Clear and all-inclusive error
messages are provided throughout.

Appendix D lists the COMPRESS command to illustrate the attention handler, alternate
ddnames, various dynamic allocations, and the ATTACH routine to call the copy utility SPFCOPY.

After the parse, the attention handler is set up, Next a check is made on the entered dsname,
because the user may have just entered a member name. 'SYS1 .LPALIB' is rejected as a dsname.
Subroutine RECFM is used to check the existence of the dataset name. The COMMON /ATTR/ is
transmitted from RECFM so that the volume may be used in dynamic allocation to avoid another
catalog search, and to check if the dsname was a PDS. After the various keys are adjusted de-
pending on the keywords used, DYNALC allocates the dataset name, and its ddname is stuffed in-
to the SYSIN control card positions at STR(12) and STR(27) with subroutine CHMOV. Note that if
RELEASE is specified, the allocation is equivalent to

ALLOC DS(dsname') SPACE(I) TR MOD PLSE VOL'volser')

which releases space to the nearest track upon unallocation.

The VIO SYSIN file is next allocated with one track and the line

COPY INDD=ddname,OUTDD=ddnaine

is inserted into it with the TSPOPN, TSPPUT, and TSPCLS routines. This is an instance where the
allocation for a system-generated ddname for the input PDS allocation is assumed, because an
eight-character name is stuffed. The control card would be wrong if less than eight characters
were returned by the system. The alternate SYSIN ddname is stuffed into the alternate ddname
list.

-" Next, SYSUT3 and SYSUT4 are allocated and their ddnames are stuffed into the alternate
* ddname list. SYSPRINT is then allocated to DUMMY or a terminal file. Here both the convertible

attribute and permanently allocated attribute are used, the former to prevent any existing afloca-
tion made on TSO (without the convertible attribute) from being selected, and the latter to prevent
the system from automatically unallocating the file at the end of the command, so the allocation
may be reused at some future time. The SYSPRINT ddname is stuffed into the alternate ddname --

list.

The only time the attention flag is checked is right before issuing a warning not to hit atten-
tion. This is primarily because all four allocations needed for SPFCOPY involve no dsname, and
are quickly processed. The ATTACH subroutine is then called to execute SPFCOPY, functionally
equivalent to IEBCOPY. A message is bypassed if attention was signalled, contrary to instruc-
tions, or SYSPRINT was printed at the terminal.

i* If the system or program abends, the abend code is transmitted by LC as follows: -LC will
have the hex value of 01SSSUUU where SSS is the system abend code and UUU is the user
abend code. These are easily extracted by the TSHEX routine. In this case, only the system code
was extracted and a message sent in case of abend, because it was deemed unlikely that the
SPFCOPY program would abend.

Finally, the compressed dataset is unallocated unless it had been allocated SHR in the first
place.

224

-- 7-

6. CONCLUSIONS AND RECOMMENDATIONS

The routines and techniques developed in the last few years at HDL enable sophisticated 0
* •commands to be written in Fortran for use in TSO. Overall systems efficiency is considerably im-

proved when using commands instead of Clists, and at the same time the commands are quite
* easy to write, maintain, and debug.

However, the facility is not yet complete. There are three items which still should be
developed:

(a) A facility to execute a Clist from a command.

(b) Error control for commands to enable cleanup operations if the command abends. Such
a facility was provided in the ATTACH subroutine.

(c) PARSE should be reset before it exits to enable using it for subcommand parsing.

23

-Ai

23°

.L.

I 4-

"iAppendix A.-Major Assembler Interface Subroutines '.-. i

* . -...

I'..
. -

* .

p...

p p * *~. *.~-. -. .

APPENDIX A

PROGRAM: ATTACH CATEGORY #: Z

CATEGORY: ALL OTHERS

TITLE:

ATTACH IS A FORTRAN-CALLABLE SUBROUTINE TO EXECUTE ANY PROGRAM.

TYPE: S SOURCE: AS DATE LAST CHG: 820503

AUTHOR: BILL JACOB, IBM (MODIFIED BY B. H. AUDET, 00251)
(MODIFIED BY W.C. BODYCOMB, IBM)

' PURPOSE:

THIS ENABLES WRITING PROGRAMS THAT CALL OTHER PROGRAMS. IT IS AN
ABSOLUTE NECESSITY FOR WRITING COMMANDS TO EXECUTE COMPILERS.

CALLING SEQUENCE:
CALL ATTACH(IOPT,IRC,PGM,PARM1,PAM2,)

ARGUMENTS:
NAME TYPE DIM DESCRIPTION

IOPT INT*4 110 INPUI CONTROL OF ATTENTION INTERRUPTS. IF = 0, THIS
PROGRAM DOES NO HANDLING OF ATTENTION INTERRUPTS. IF

1, THE PROGRAM BEING ATTACHED IS STOPPED WHEN THE
ATTENTION KEY IS HIT, UNLESS IT HAS ITS OWN ATTENTION
HANDLER

IRC .INT*4 NO THE OUT'UT RETURN CODE FROM THE PROGRAM BEING ATTACHED
AND I. IF THE PROGRAM WAS INTERRUPTED BY ATTENTION.
ANY OTHER NEGATIVE VALUE MEANS THE PROGRAM BEING
ATTACHED ABENDED. -IRC WILL HAVE THE HEX VALUE OF
O1SSSUUU, WHERE SSS IS THE SYSTEM ABEND CODE AND UUU
IS THE USER ABEND CODE.

PGM 8 BYTES THE NAME OF THE PROGRAM BEING ATTACHED, PADDED WITH
OR BLANKS TO 8 CHARACTERS. IT MUST BE A NAME IN THE LINK

16 BYTES PACK AREA OR A MEMBER IN ONE OF THE LINK LIST LIBRAR-
IES. HOWEVER, IF THE NAME BEGINS WITH "SYSO", IT IS
ASSUMED TO BE A DDNAME TO WHICH A LOAD LIBRARY IS
ALLOCATED. THE NEXT 8 BYTES MUST THEN BE THE NAME OF
THE MEMBER TO BE EXECUTED. IF THE DDNAME IS
SUPPLIED, THE LIBRARY IS USED AS A TASKS LIBRARY SO
THAT SUBSEQUENT LOADS OR ATTACHES PERFORMED BY THE
ATTACHED PROGRAM WILL BE RESOLVED TO THIS LIBRARY.

PARMI ARRAY YES THIS AND ANY OTHER PARAMETERS ARE OPTIONAL, AND IF
PRESENT, WILL BE PASSED TO THE PROGRAM BEING ATTACHED.

RESTRICTIONS:
NONE

REFERENCES/ACKNOWLEDGEMENTS:
NONE

27 J

-p-.

27

% i . '" " *" "" '. " " . " " .• .'" " " ' -"

~~~~~~~~~~~~~~~~~..... -..... . . . . . . . . . . .. - _ •-':'"" , . . ". • ."



•.9

APPENDIX A

PROGRAM: ATTEN CATEGORY #: Z

CATEGORY: ALL OTHERS

TITLE:
TSO ATTENTION INTERCEPT ROUTINE.

TYPE: S SOURCE: AS DATE LAST CHG: 821015

AUTHOR: BILL JACOB

PURPOSE:

ATTEN INTERCEPTS AN ATTENTION INTERRUPT AND SET ITS ARGUMENT TO A
NONZERO VALUE. AN ENTRY CALLED ATTOFF DISABLES THE INTERCEPT.

CALLING SEQUENCE:
CALL ATTEN(I)
CALL ATTOFF

ARGUMENTS:
NAME TYPE DIM DESCRIPTION
I INT*4 NO OUTPUT ATTENTION FLAG THAT IS SET TO A NONZERO

OR VALUE (X'01') WHEN THE TERMINAL USER CAUSES AN
LOG*4 INTERRUPT. IT SHOULD BE SET TO ZERO (OR FALSE.)

OR BEFORE ENTRY TO THE ROUTINE. IT MAY BE RESET TO
LOG*I ZERO (OR .FALSE.) FOLLOWING A CHECK ON ON ITS VALUE

THAT RESULTED IN A NONZERO (OR .TRUE.) VALUE, OR
AFTER ATTOFF IS CALLED. (A DIFFERENT ARGUMENT MAY
BE USED AFTER A CALL TO ATTOFF).

RESTRICTIONS:
(1) ATTEN IS CALLED AT THE BEGINNING OF THE PROGRAM, AND MAY BE CALLED

AGAIN AFTER IT IS DISABLED WITH ATTOFF. WHEN THE ATTENTION
INTERCEPT IS ENABLED, THE USER PERIODICALLY CHECKS THE VALUE OF
THE ATTENTION FLAG, I, TO SEE IF IT HAS A NONZERO VALUE. IF IT
DOES, APPROPRIATE ACTION SHOULD BE TAKEN (CLEANUP AND EXIT,
RESTART AT A SPECIFIC POINT IN THE PROGRAM, ETC.) THIS IS
PARTICULARLY IMPORTANT FOLLOWING I/0 OPERATIONS OR AFTER PROGRAM
LOOPS. IF PROGRAM CONCLUSION IS NOT PART OF THE ACTION TAKEN, THE
ATTENTION FLAG, I, SHOULD BE RESET TO ZERO, OR THE PROGRAM WILL . -

THINK AN INTERRUPT OCCURRED THE NEXT TIME I IS CHECKED.
(2) THIS ROUTINE DOES NOT PREVENT THE PROGRAM LOSING CONTROL IF

TWO INTERUPTS OCCUR TOGETHER. WITHIN A SINGLE LOAD MODULE (WITH
ANY ONE COPY OF ATTEN), ONLY ONE ATTENTION EXIT WILL BE ACTIVE.

(3) IF OPT(2) IS USED IN A FORTRAN PROGRAM, IT IS WISE TO PUT THE
ATTENTION FLAG, I, IN COMMON, TO PREVENT SHIFTING OF STATEMENTS
CONTAINING I BY THE OPTIMIZER.

REFERENCES/ACKNOWLEDGEMENTS:
NONE

28

. -. ,--.

"' " '- '- -. -. ''i '- " - . - . ', . . " ." • . . .i, . . .-



w*1

APPENDIX A

PROGRAM: COMAND CATEGORY #: Z

CATEGORY: ALL OTHERS

TITLE:
EXECUTES A TSO COMMAND FROM ANOTHER COMMAND.

TYPE: S SOURCE: AS DATE LAST CHG: 800805

AUTHOR: BILL JACOB, IBM; MODIFIED BY WALTER C. BODYCOMB, IBM

PURPOSE:
WHEN WRITING OTHER COMMANDS, IT IS OFTEN NECESSARY TO PERFORM A TASK
FOR WHICH NO PRIMARY SUBROUTINE HAS BEEN WRITTEN (E.G., PROTECT). THIS
SUBROUTINE ALLOWS THE USE OF ANY IBM OR HDL TSO COMMAND. PROVISION IS
ALSO MADE FOR TRANSMITTING BACK CHARACTER INFORMATION FROM THE CALLED

* COMMAND, IF THAT COMMAND WAS CODED TO SUPPLY IT.

CALLING SEQUENCE:
CALL COMAND(IOPT,IRC,CMDNAM (.RTNLEN,RTNARG)(,CMDRGS ...))

ARGUMENTS:
NAME TYPE DIM DESCRIPTION
IOPT INT NO ATTENTION HANDLER ARGUMENT (INPUT). SET TO

0, IGNORE ATTENTION AND NO 'RTNARG' IS EXPECTED.
(TSO RETURNS TO "READY" MODE FOR ATTENTION.)

1, WILL STOP 'CMDNAM' IF THE ATTENTION KEY IS HIT,
AND 'RTNARG' IS NOT EXPECTED.

2, IGNORE ATTENTION AND 'RTNARG' IS EXPECTED.
(TSO RETURNS TO "READY" MODE FOR ATTENTION.)

3, WILL STOP 'CMDNAM' IF THE ATTENTION KEY IS HIT,
AND 'RTNARG' IS EXPECTED.

IRC INT NO OUTPUT RETURN CODE:
-1 MEANS THE USER SIGNALLED ATTENTION,
-2 MEANS THE SUBROUTINE IS NOT BEING CALLED FROM

A TSO COMMAND,
-3 MEANS THERE IS A SYNTAX ERROR IN THE CALLING

SEQUENCE OR ARGUMENTS FOR THIS SUBROUTINE,
ANY OTHER VALUE IS THE RETURN CODE OF 'CMDNAM'.

CMDNAM CHAR 8 THE NAME OF THE TSO COMMAND TO BE EXECUTED (INPUT).
BYTES IT SHOULD BE LEFT JUSTIFIED AND PADDED WITH BLANKS

TO 8 CHARACTERS.
RTNLEN INT*4 NO INPUT/OUTPUT VARIABLE. AS INPUT, IT IS THE MAXIMUM

NUMBER OF BYTES EXPECTED FOR 'RTNARG'. AS OUTPUT,
IT IS THE NUMBER OF BYTES RETURNED TO 'RTNARG'. THE
OUTPUT VALUE WILL BE LESS THAN OR EQUAL TO THE
INPUT VALUE.

RTNARG CHAR AS THE AREA IN WHICH THE STRING RETURNED FROM 'CMDNAM'
REQ'D IS PLACED. PROVISION MUST BE MADE TO SUPPLY THE

STRING FROM 'CMDNAM', AS IT HAS BEEN IN SUBROUTINE
"QUIT".

29

. . .-.. . ..



rk..~rrw --- x --.

APPENDIX A

PROGRAM: COMAND CATEGORY #: Z

ARGUMENTS:
NAME TYPE DIM DESCRIPTION
CMDRGS CHAR YES ONE OR MORE ARGUMENTS THAT SUPPLY THE COMMAND KEY-

OR WORDS (INPUT). TWO FORMATS ARE ACCEPTABLE AND THEY
INT NO MAY BE INTERMIXED AS NECESSARY TO SUPPLY ALL THE

KEYWORDS:
1) A SELF-DEFINING CHARACTER STRING. THE FIRST

CHARACTER IS TAKEN TO BE A DELIMITER AND THE END
OF THE STRING IS THE NEXT OCCURANCE OF THIS SAME
DELIMITER. IN THIS FORM. A COUNT NEED NOT BE
GIVEN. (THE DELIMITER SHOULD BE SOME PRINTABLE ".
CHARACTER.) THE STRING IS ADDED TO THE COMMAND

KEYWORD STRING.
2) A DOUBLE ARGUMENT CHARACTER STRING. THE FIRST IS

AN INTEGER GIVING THE NUMBER OF CHARACTERS IN THE
STRING. THE SECOND IS THE STRING THAT IS TO BE j
ADDED TO THE COMMAND KEYWORD STRING.

ONE BLANK IS AUTOMATICALLY INSERTED BETWEEN THE
COMMAND NAME AND ANY ARGUMENTS (CMDRGS) SUPPLIED BY
THE USER.

RESTRICTIONS:
SOME COMMANDS MAY NOT WORK, BUT TESTING IS REQUIRED TO DETT' INE T-T$.-
COMMAND ON THE DATASET 'SYS1.PAGSRCE(COMAND) WITH NONUM rLLOWS. IT

AS, UMES THE NAME OF THE MEMBER (COMAND) IS IN A REAL*8 VARIABLE CALLED
ME'1 WITH LMEM AS ITS LENGTH:
CluL COMAND(1,IRC,'LIST ','/''SYS1.PAGSRCE(/',LMEM.MEM,'/'' NONUM/')
BOTH FORMS OF CMDRGS ARE USED WITH A SLASH () AS THE SELF DEFINING
DELIMITER. NOTE THAT THE QUOTE NEEDED IN THE COMMAND SYNTAX IS DOUBLED
UP INSIDE THE QUOTED STRING ARGUMENT.

THE SYSTEM LOOKS FOR THE COMMAND IN THE USUAL PLACES (THE LINK PACK
AREA AND THE LINK LIST DATASETS). ,

THE ARGUMENTS 'RTNLEN' AND 'RTNARG' ARE MEANINGFUL ONLY IF PROVI-
SION WAS MADE TO SUPPLY ALPHA INFORMATION BACK TO THE CALLING COMMAND .
AS WITH SUBROUTINE "QUIT". 4

REFERENCES/ACKNOWLEDGEMENTS:
NONE

%3

30 %'

4% o . . , . . . . .. . .



770

APPENDIX A

PROGRAM: DYNALC CATEGORY #: Z

CATEGORY: ALL OTHERS

TITLE:
DYNAMIC ALLOCATION CALL INTERFACE

TYPE: S SOURCE: AS DATE LAST CHG: 820511

AUTHOR: BILL JACOB

PURPOSE:
THE PROGRAM WILL DYNAMICALLY ALLOCATE DATA SETS DURING THE RUNNING
OF A PROGRAM. THIS INCLUDES ALLOCATE, CREATE, FREE, AND DELETE.

CALLING SEQUENCE:
CALL DYNALC(IVERB,IRETCD,IERRCDINFOCDNTEXTS,T1,T29,...)

ARGUMENTS:
NAME TYPE DIM DESCRIPTION
IVERB 1*4 DYNAMIC ALLOCATION VERB CODE. THIS VALUE SHOULD

BE SUPPLIED BY THE USER TO INDICATE WHICH OF THE
MAJOR DYNAMIC ALLOCATION FUNCTIONS HE IS REQUEST-
ING. (SEE THE MANUAL REFERENCED BELOW.) HOWEVER,
IVERB=8 CAN BE USED WITH NO OTHER ARGUMENTS TO
FORCE THE NEXT DYNAMIC ALLOCATION TO NOT USE AN
EXISTING ALLOCATION. IT IS RECOMMENDED THAT

CALL DYNALC(8)
PRECEDE A CALL TO ALLOCATE A DUMMY FILE IF THAT
ALLOCATION IS MADE WITHOUT THE CONVERTIBLE ATTRIBUTE.

* IRETCD 1*4 DYNAMIC ALLOCATION RETURN CODE. THIS VALUE WILL
BE SET BY 'DYNALC' TO THE RETURN CODE IT RECEIVES
FROM THE SYSTEM DYNAMIC ALLOCATION ROUTINE.

IERRCD 1*4 ERROR CODE FOR DYNAMIC ALLOCATION. THIS VALUE WILL
BE SET BY 'DYNALC' TO THE DYNAMIC ALLOCATION ERROR
CODE RETURNED BY THE SYSTEM. IT IS OF INTEREST,
GENERALLY, ONLY WHEN 'IRETCD' IS NONZERO.

INFOCD 1*4 DYNAMIC ALLOCATION INFORMATIONAL CODE. THIS VALUE
WILL BE SET BY 'DYNALC' TO THE INFORMATIONAL REASON
CODE RETURNED BY THE SYSTEM. IT IS OF INTEREST,
GENERALLY, ONLY WHEN 'IRETCD' IS NONZERO.

NTEXTS 1*4 NUMBER OF TEXT UNITS TO BE USED. THIS PARAMETER
IS USED BY THE CALLER TO TELL 'DYNALC' HOW MANY
OF THE FOLLOWING TEXT UNIT ARGUMIENTS ARE TO BE
PASSED TO THE SYSTEM DYNAMIC ALLOCATION ROUTINE.

IF 'NTEXTS' IS ZERO, ALL OF THE TEXT UNIT ARGUMENTS
CODED IN THE CALLING STATEMENT WILL BE PASSED TO THE
SYSTEM. WHEN NON-ZERO (MUST BE POSITIVE), 'NTEXTS'
CAN BE USED BY THE PROGRAMMER TO CONDITIONALLY PASS
TEXT UNITS: ONLY THE FIRST 'NTEXTS' TEXT UNITS
WILL BE PASSED TO THE SYSTEM ROUTINE.

31-L •

.. .



APPENDIX A

PROGRAM: DYNALC CATEGORY #: Z

ARGUMENTS: CONTINUED

TI-TN CHAR YES DYNAMIC ALLOCATION TEXT UNITS. EACH TEXT UNIT
OCCUPIES ONE PARAMETER IN THE SUBROUTINE CALLING
STATEMENT FOR 'DYNALC'. IN GENERAL, A TEXT UNIT
CORRESPONDS TO A JCL KEYWORD AND IT'S VALUE OR TO
A KEYWORD ON THE TSO 'ALLOCATE' OR 'ATTRIB'
COWH1ANDS. A TYPICAL'TEXT UNIT CONTAINS:
- THE TEXT UNIT KEY INDICATING WHAT KIND OF

INFORMATION IS CONTAINED IN THIS TEXT UNIT.
IF 0, IT WILL BE IGNORED.

' - A NUMBER INDICATING HOW MAY VALUES ARE SUPPLIED
IN THIS TEXT UNIT (GENERALLY ONE).

- A NUMBER INDICATING HOW LONG THE FIRST VALUE
IS.

- THE VALUE BEING SUPPLIED.
THESE LAST TWO ELEMENTS MAY APPEAR MORE THAN ONCE
IF THE SECOND ELEMENT INDICATES THAT SEVERAL
VALUES ARE BEING SUPPLIED. SOME TEXT UNITS
REQUIRE ONLY THE TEXT UNIT KEY AND NO OTHER INFOR-
MATION. THE FIRST THREE ELEMENTS IN EACH TEXT

- ,UNIT ARE HALFWORD INTEGERS (INTEGER*2). THE LAST
ELEMENT WILL VARY IN LENGTH ACCORDING TO THE TYPE
OF TEXT UNIT AND THE INFORMATION BEING SUPPLIED.
FOR EXAMPLE, THE TEXT UNIT FOR A DATASET NAME OF
'SYS1.PAGLOAD' MIGHT BE SUPPLIED BY:

INTEGER*2 DSN(9)/2,1,12, SY','SI , .P', AG ,

X 'LO','AD'/
CALL DYNALC( ....... DSN,

THE TEXT UNIT KEY IS 2; 1 VALUE IS BEING SUPPLIED.
THE VALUE IS 12 CHARACTERS LONG, AND IS SUPPLIED
AS SHOWN ABOVE. CONSTRUCTION OF THESE TEXT UNITS
IS NOT POSSIBLE WITHOUT RECOURSE TO THE MANUAL
CITED BELOW. NOTE THAT, IN THE MANUAL, SOME
INFORMATION SUCH AS THE TEXT UNIT KEYS IS GIVEN IN
HEXADECIMAL. THE USER SHOULD TAKE CARE TO CONVERT
THESE TO DECIMAL AS REQUIRED.

RESTRICTIONS:
THIS PROGRAM SHOULD NOT BE USED BY THE CASUAL PROGRAMMER. HIGHER
LEVEL FORTRAN CALLABLE ROUTINES WILL BE WRITTEN THAT MAKE USE OF THIS
SUBROUTINE, AND WILL BE USED FOR SPECIFIC OPERATIONS SUCH AS FILE
ALLOCATION.
A NONCALLABLE ENTRY POINT, DYNALB, IS AVAILABLE FOR DAIRFAIL
PROCESSING USING SUBROUTINES DYNALE, DYNALW, OR DYNALM.

REFERENCES/ACKNOWLEDGEMENTS:
THIS SUBROUTINE REFERS TO THE SYSTEM LIBRARY MANUAL THAT
DESCRIBES THE ALLOCATION PARAMETERS.
THE MANUAL IS CALLED OS/VS2 SYSTEM PROGRAMMING LIBRARY:
JOB MANAGEMENT GC28-0627.

32



APPENDIX A

PROGRAM: PARSE CATEGORY #: Z -

CATEGORY: ALL OTHERS

TITLE:
A CALL INTERFACE TO THE TSO PARSE ROUTINE.

TYPE: S SOURCE: AS DATE LAST CHG: 780725 _-

AUTHOR: BILL JACOB, IBM

PURPOSE:
WILL ALLOW THE WRITER OF TSO COMMANDS TO FULLY UTILIZE THE TSO PARSER,
INCLUDING PROMPTS, ERROR DETECTION. RECOGNITION OF MUTUAL EXCLUSIVE
KEYWORDS, DATASET NAMES WITH PASSWORDS, KEYWORD PARAMETER
ABBREVIATIONS, ETC.

CALLING SEQUENCE:
THERE ARE 8 ENTRY POINTS:

CALL PARDSN(DSN.MEM,PSWD.LENS,LIST(,NUM),IOPT(,PRODEF))
CALL PARPOS(DATA,LENS,TYPE,LIST(,NUM),IOPT,MAXL,IFIRST,IOTHER(,PRODEF))
CALL PARDEC(INTGS(,TYPE),LIST(,NUM)(.IOPT,PRODEF))
CALL PARSTR(STR.LENS,MAXL(,IOPT(,PRODEF)))
CALL PARKEY(IWHICH(,IDEFLT))
CALL PARNAM(NAME(,ISUBF)(,-l,INSERT)(.ALIASl)(k,ALIAS2) ...)
CALL PARSUB(ISUBF)
CALL PARSE(IRETCD(,CMD))
THE ORDER OF CALL IS SOMETIMES IMPORTANT. PARENTHESIZED VARIABLFS ARE
EITHER OPTIONAL OR MUST SOMETIMES BE OMITTED. SEE RESTRICTIONS.

ARGUMENTS: (FOR ENTRY PARDSN)
NAME TYPE DIM DESCRIPTION
DSN 44 BYTES*LIST OUTPUT VARIABLE SET BY PARSE TO THE DATASET NAMES

ENTERED, WITHOUT MEMBER OR PASSWORD; PADDED WITH
BLANKS TO 44 BYTES FOR EACH NAME. IF LIST=5,
APPROPRIATE DIMENSION STATEMENTS ARE -

INTEGER*4 DSN(11,5) OR INTEGER*2(22,5)
MEM 8 BYTES*LIST SET TO THE MEMBER NAMES ENTERED, PADDED WITH BLANKS.

TYPICAL DIMENSION STATEMENTS:
REAL*8 MEM (LIST=l)
INTEGER MEM(2) (LIST=l)
REAL*8 MEM(5) (LIST=5)
INTEGER*2 MEM(4,5) (LIST=5)

PSWD. 8 BYTES*LIST SET TO THE PASSWORDS ENTERED, PADDED WITH BLANKS.
TYPICAL DIMENSION STATEMENTS ARE SIMILAR TO MEM.

LENS 1*2 3*LIST AN INTEGER ARRAY SET TO THE LENGTHS OF DSN, MEM,
OR AND PSWD. IF ANY ARE OMITTED, LENS IS SET TO 0.

1*4 IOPT DETERMINES IF LENS IS A 2-BYTE OR 4-BYTE
INTEGER. TYPICAL DIMENSIONS ARE SIMILAR TO MEM:

INTEGER*2 LENS(3,5) (LIST=5), ETC.
IF DSN IS ENTERED IN QUOTES (APOSTROPHES), THE
APPROPRIATE ELEMENT OF LENS WILL BE NEGATIVE.

LIST 1*4 NO THE NUMBER OF DSNAMES ALLOWED (INPUT VARIABLE). IF
LIST=l, THEN NUM MUST BE OMITTED.

NUM 1*4 NO THE NUMBER OF DSNAMES ENTERED (0-255). MUST BE
OMITTED IF LIST=I. THIS IS AN OUTPUT VARIABLE.

IOPT 1*4 NO A SET OF OPTIONS WHICH CAN BE SELECTED BY ADDING

33

- ,*.- - * - , . , . , , ' . *. .•



APPENDIX A

PROGRAM: PARSE CATEGORY #: Z

ARGUMENTS: CONTINUED
THE FOLLOWING DECIMAL VALUES:
0 - PARAMETER NOT REQUIRED.
1 - THIS DSNAME IS REQUIRED; 'PRODEF' IS A PROMPT-

ING MESSAGE (AS IN "ENTER 'PRODEF'")
2 THIS DSNAME IS REQUIRED; 'PRODEF' IS A DEFAULT

VALUE.
4 - AN ASTERISK IS ACCEPTABLE AS THE DSNAME, OR AS

ANY ONE LEVEL OF THE DSNAME, E.G.,
'HA25XX.*.FORT'.

8 - THE TSO USER PREFIX IS **NOT** TO BE LEFT-
APPENDED TO THE DSNAME ENTERED, IF UNQUOTED.

16 - LENS IS AN 1*4 VARIABLE RATHER THAN THE DEFAULT
1*2 VARIABLE.

PRODEF AD YES THE PROMPTING PHRASE OR DEFAULT PHRASE, DEPENDING
ON IOPT. IF NEITHER I OR 2 IS SPECIFIED IN IOPT,
THEN PRODEF IS NOT REQUIRED AND IS IGNORED IF
SUPPLIED. IN THAT CASE, LENS WILL CONTAIN ZEROES
IF THE USER DOES NOT ENTER A DSNAME.

NOTE ON AD: THE TYPE AD IS USED HERE AND BELOW TO INDICATE THAT THE
PARAMETER IS A CHARACTER STRING WHICH IS TO BE SURROUNDED
BY SELF-DEFINING DELIMITERS (AS IN THE TSO FIND AND CHAN JE
COMMANDS). THE FINAL DELIMITER MAY NOT APPEAR WITHIN THE
CHARACTER STRING. FOR EXAMPLE:

CALL PARDSN(DSN,...,,'/DATASET TO BE COMPILED/')
THE 1 INDICATES THE DATASET IS REQUIRED; IF OAITTED, THE
PROMPTING MESSAGE "ENTER POSITIONAL PARAMETER DATASET TO
BE COMPILED" IS DISPLAYEP

ARGUMENTS: (FOR ENTRY PARPOS)
NAME TYPE DIM DESCRIPTION

DATA ANY MAXL*LIST OUTPUT VARIABLE SET BY PARSE TO THE SET OF
PARAMETERS ENTERED BY THE USER; PADDED BY BLANKS TO
THE VALUE OF MAXL.

LENS 1*4 LIST THE LENGTH OF EACH 'DATA' (OUTPUT VARIABLE). IT IS
OR 1*2 SET BY PARSE IN THE RANGE OF 0 (IF PARAMETERS NOT

ENTERED) TO MAXL. IOPT DETERMINES IF LENS IS AN -
1*2 OR 1*4 VARIABLE.

TYPE AD YES SELF-DELIMITED STRING WHICH IS USED TO PROMPT THE
USER IF THE ENTRY WAS INVALID, AS DEFINED BY IFIRST,
IOTHER, AND MAXL. THE DISPLAYED STRING IS
"INVALID 'TYPE', REENTER" 79

THIS IS AN INPUT VARIABLE.
LIST 1*4 NO THE NUMBER OF DATA NAMES ALLOWED (INPUT VARIABLE).

IF LIST=l, THEN NUM MUST BE OMITTED.
NUM 1*4 NO THE NUMBER OF DATA NAMES ENTERED (0-255). MUST BE

OMITTED IF LIST=I.
IOPT 1*4 NO A SET OF OPTIONS WHICH CAN BE SELECTED BY ADDING

THE FOLLOWING DECIMAL VALUES.
0 - PARAMETER NOT REQUIRED; NO PROMPTING OR

DEFAULTS AND PRODEF IS IGNORED IF SUPPLIED. -.
1 - THIS PARAMETER IS REQUIRED; 'PRODEF' IS A

PROMPTING MESSAGE (AS IN "ENTER 'PRODEF'").
2 - 'PRODEF' IS A DEFAULT VALUE FOR THIS PARAMETER.

34



APPENDIX A

PROGRAM: PARSE CATEGORY #: Z

ARGUMENTS: CONTINUED
APPLICABLE ONLY IF THIS PARAMETER IS REQUIRED.

4 - AN ASTERISK IS ACCEPTABLE FOR THIS PARAMETER.
8 - THIS PARAMETER IS NOT TO BE TRANSLATED TO UPPER

CASE BY PARSE.
16 - LENS IS AN 1*4 VARIABLE RATHER THAN THE DEFAULT

1*2 VARIABLE.
MAXL V.4 NO THE MAXIMUM NUMBER OF BYTES OF 'DATA' (THE MAXIMUM 0

VALUE OF ANY 'LENS'). THIS IS AN INPUT VARIABLE.
IFIRST 1*4 NO RESTRICTION ON THE FIRST CHARACTER OF THIS PARAMETER

0 - ANY CHARACTER ACCEPTABLE.
1 - ALPHABETIC OR NATIONAL CHARACTER ONLY.
2 NUMERIC ONLY.
3 - ALPHABETIC. NATIONAL, OR NUMERIC ONLY.
4 - ALPHABETIC ONLY.
5 - ALPHABETIC OR NUMERIC ONLY.

IOTHER 1*4 NO RESTRICTION ON OTHER T-AN THE FIRST CHARACTERS OF ,
THIS PARAMETER (INPUT VARIABLE). THE SAME CODE AS

'IFIRST' IS USED.
' PRODEF AD YES THE PROMPTING STRING OR DEFAULT STRING (IF THIS IS A

REQUIRED PARAMETER). 'PRODEF' IS IGNORED IF THIS IS
NOT A REQUIRED PARAMETER. IN THAT CASE, LENS IS SET
TO ZEROES. THIS IS AN INPUT PARAMETER. -

ARGUMENTS: (FOR ENTRY PARDEC)
NAME TYPE DIM DESCRIPTION
INTGS 1*4 LIST OUTPUT VARIABLE SET BY PARSE TO THE FIXED POIiT

NUMBERS ENTERED BY THE USER.
TYPE AD YES SELF-DELIMITED STRING WHICH IS USED TO PROMPT THE

USER IF THE ENTRY WAS INVALID. AS DEFINED BY IFIRST,
IOTHER. AND MAXL. THE DISPLAYED STRING IS
"INVALID 'TYPE', REENTER"

THIS IS AN OPTIONAL INPUT VARIABLE. IF OMITTED, ITS
VALUE DEFAULTS TO '/NUMBER/'.

LIST 1*4 NO THE NUMBER OF INTOS ALLOWED (INPUT VARIABLE).
IF LIST=l, THEN NUM MUST BE OMITTED.

NUM 1*4 NO THE NUMBER OF INTEGERS ENTERED (0-255). MUST BE
OMITTED IF LIST=I. THIS IS AN OUTPUT VARIABLE.

IOPT 1*4 NO A SET OF OPTIONS WHICH CAN BE SELECTED:
1 - 'PRODEF' IS A PROMPT STRING. THIS PARAMETER IS

REQUIRED.
2 'PRODEF' IS A DEFAULT STRING (IN CHARACTER

FORM). THIS PARAMETER IS REQUIRED.
IF THIS PARAMETER IS NOT REQUIRED, IOPT AND PRODEF
SHOULD BE OMITTED.

PRODEF AD YES THE PROMPTING STRING OR DEFAULT STRING (IF THIS IS A
REQUIRED PARAMETER). 'PRODEF' IS IGNORED IF THIS IS
NOT A REQUIRED PARAMETER, AND IOPT WAS SPECIFIED.

ARGUMENTS: (FOR ENTRY PARSTR)
NAME TYPE DIM DESCRIPTION
STR ANY YES THE OUTPUT VARIABLE SET TO THE CHARACTER STRING THAT

THE COMMAND LINE SPECIFIED.

LENS 1*2 OR NO AN OUTPUT VARIABLE SET TO THE LENGTH OF 'STR'.
14 THE TYPE DEPENDS ON 'IOPT'.

p.3.'° 35-

L .



APPENDIX A

PROGR-AM: PARSE CATEGORY #: Z

ARGUMENTS: CONTINUED
MAXL 1*4 NO AN OUTPUT VARIABLE SET TO THE MAXIMUM VALUE OF

'LENS'.
IOPT 1*4 NO A SET OF OPTIONS WHICH CAN BE SELECTED BY ADDING

THE FOLLOWING DECIMAL "'ALUES.
0 PARAMETER NOT REQUIRED; NO PROMPTING OR

DEFAULTS AND 'PRODEF' IS IGNORED IF SUPPLIED.
1 THIS PARAMETER IS REQUIRED; 'PRODEF' IS A

PROMPTING MESSAGE (AS IN "ENTER 'PRODEF'").
2 'PRODEF' IS A DEFAULT VALUE FOR THIS PARAMETFR.

APPLICABLE ONLY IF THIS PARAMETER IS REQUIRED.
8 - THIS PARAMETER IS NOT TO BE TRANSLATED TO UPPER

CASE BY PARSE.
16 - LENS IS AN 1"4 VARIABLE RATHER THAN THE DEFAULT

1*2 VARIABLE.
PRODEF AD YES THE PROMPTING STRING OR DEFAULT STRING (IF THIS IS A

REQUIRED PARAMETER). 'PRODEF' IS IGNOPED IF THIS IS
NOT A REQUIRED PARAMETER. IN THAT CASE, LENS IS SET
TO ZERO. THIS IS AN INPUT PARAMETER.

ARGUMENTS: (FOR ENTRY PARKEY)
NAME TYPE DIM DESCRIPTION
IWHICH 1*4 NO OUTPUT VARIABLE SET BY PARSE TO ThE NUMBER OF THE

PARNAM NAME WHICH THE USER ENTERED; ZERO IF NO
DEFAULT AND NO KEYWORD !ROM THE PARNAM LIST (DE-
FINED IN CALLS TO PARNMI FOLLOWING) AS ENTERED.

IDEFLT AD YES THE DEFAULT VALUE OF THE KEYWORD. MUcT MATCH A
PARNAM NAME OR ALIAS WHICH FOLLOW IN CALLS TO
PARNAM. OMIT IF THERE IS NO DEFAULT.

ARGUMENTS: (FOR ENTRY PARNAM)
NAME TYPE DIM DESCRIPTION
NAME AD YES ONE OF THE POSSIBLE NAMES FOR THE KEYWORD (INPUT

VARIABLE).
ISUBF 1*4 NO INPUT NUMBER ONLY IF 'NAME' HAS A SUBFIELD (KEYWORD

WITH VALUE). THE NUMBER IS ARBITRARY BUT MUST MATCH
'ISUBF' IN THE CALL TO PARSUB, AND MUST BE DISTINCT
FROM ALL OTHER 'ISUBF' VALUES USED BEFORE THE CALL
TO PARSE.

INSERT AD YES KEYWORD(S) WHICH WILL BE LOGICALLY INSERTED INTO
THE COMMAND BUFFER BY PARSE IF THE KEYWORD 'NAME'
IS FOUND. USED IF ONE KEYWORD IMPLIES ANOTHER. IF
INSERT IS USED, IT MUST BE PRECEDED BY -1. THIS IS
AN INPUT VARIABLE.

ALIASI AD YES ALIAS FOR THE KEYWORD IN NAME, OTHER THAN THE
STANDARD TSO ABBREVIATION CONVENTIONS. THIS IS AN
INPUT VARIABLE.

ALIAS2 AD YES AS IN ALIASI. OTHER ALIASES CAN BE DEFINED.

ARGUMENTS: (FOR ENTRY PARSUB)
NAME TYPE DIM DESCRIPTION
ISUBF 1*4 NO INPUT SUBFIELD IDENTIFICATION, WHICH MUST MATCH

EXACTLY THE ISUBF PARAMETER OF ONE AND ONLY ONE
PRECEDING PARNAM SUBROUTINE CALL. THIS IS AN INPUT
PARAMETER.

36



APPENDIX A

PROGRAM: PARSE CATEGORY #: Z

ARGUMENTS: CONTINUED .O

ARGUMENTS: (FOR ENTRY PARSE)
NAME TYPE DIM DESCRIPTION
IRETCD 1*4 NO OUTPUT RETURN CODE OF THE PARSE OPERATION:

0 - PARSE WAS SUCCESSFUL.
I - PARSE WAS CALLED BEFORE ANY DESCRIPTIVE

SUBROUTINES WERE.
2 - ERROR IN PARSE'S SEARCH OF THE SAVE CHAIN AREA.
3 -PARSE WAS USED IN A BATCH OR TSO CALL

ENVIRONMENT.

4 - COMMAND PARAMETERS WERE INCOMPLETE, AND PARSE
WAS UNABLE TO PROMPT.

8 - PARSE WAS INTERRUPTED BY ATTENTION.
12 - INTERNAL ERROR IN ONE OF THESE SUBROUTINES.
16 - INSUFFICIENT MAIN STORAGE AVAILABLE.
20 - (SHOULD NOT BE RECEIVED.)
24 - INTERNAL ERROR IN ONE OF THESE SUBROUTINES.
28 - TERMINAL HAS BEEN DISCONNECTED.
NOTE: IF IRETCD IS ANYTHING OTHER THAN ZERO THEN
NONE OF THE USER VARIABLES SPECIFIED IN CALLS TO THE
OTHER SIX ENTRY POINTS CONTAINS ANY VALID INFORMA-
TION

CMD REAL*8 NO COMMAND NAME ENTERED BY THE USER (OUTPUT VARIABLE);
PADDED WITH BLANKS TO LENGT OF 8. 'CMD' IS SUPPLIED
EVEN IF 'IRETCD' = 1.

RESTRICTIONS:

USEABLE ONLY IN A TSO COMMAND ENVIRONMENT.

ALL OUTPUT VARIABLES ARE SET ONLY AFTER PARSE IS CALLED. THE ORDER OF
CALLS ARE AS FOLLOWS:
(1) PARDSN, PARDEC, OR PARPOS ARE CALLED FOR EACH POSITIONAL

PARAMETER OF THE COMMAND.
(2) PARKEY FOLLOWED BY ONE OR MORE PARNAM FOR EACH KEYWORD.
(3) PARSUB FOLLOWED BY EITHER PARDSN, PARDEC, OR PARPOS FOR ALL

KEYWORDS WITH VALUES. (PARKEY/PARNAM CAN FOLLOW PARSUB IF THE
IF THE KEYWORD VALUE IS ANOTHER KEYWORD WITHOUT VALUE.)

(4) PARSE

EXAMPLES .
(1) COMMAND: AAAA 'DSNAME' 'VOLSER' (DSNAME REQUIRED, VOLSER NOT)

INTEGER*2 DSN(22),VOL(3),MEM(4),PAS(4),LEN(3),LVOL
CALL PARDSN(DSNMEM,PASS,LEN,1,1,'/NAME OF DATASET./')
CALL PARPOS(VOL,LVOL,'/VOLUME SERIAL NUMBER/',I,O,6,3,3)
CALL PARSE(IRC)

NOTES: ONLY POSITIONAL PARAMETERS; HENCE NO PARKEY, PARSUB, OR
PARNAM.

1,1 IN PARDSN MEANS ONE DSNAME IS REQUIRED.
1,0 IN PARPOS MEANS THE SECOND POSITIONAL PARAMETER CAN HAVE

ONLY I ENTRY. BUT IT IS NOT REQUIRED.
6 MEANS 'VOLSER' ENTERED CAN HAVE AT MOST 6 CHARACTERS.
3,3 MEANS THE ENTERED VALUE FOR 'VOLSER' CAN CONTAIN ONLY

ALPHABETIC, NATIONAL, OR NUMERIC CHARACTERS.

37

. ' . " . .- -



- - - - '

APPENDIX A

PROGRAM: PARSE CATEGORY #: Z

RESTRICTIONS: CONTINUED 0

t (2) COMMAND: LISTALC STATUS SYSNAMES XKEYWD/YKEYWD (NONE REQUIRED.)
CALL PARKEY(ISTAT)
CALL PARNAM( /STATUS/')
CALL PARKEY(ISYS)
CALL PARNAM('/SYSNAMES/')
CALL PARKEY(IKW) .
CALL PARNAM( '/XKEYWD/')
CALL PARN-AM('/YKEYWD/')
CALL PARSE(IRES)

NOTES: NO POSITIONAL PARAMETERS, AND ONLY KEYWORDS WITHOUT VALUE.
HENCE NO CALLS TO PARDSN, PARDEC, OR PARPOS.

XKEYWD AND YKEYWD ARE MUTUALLY EXCLUSIVE. IKW IS SET TO
0 IF NEITHER ARE SPECIFIED, 1 IF XKEYWD IS SPECIFIED, OR
2 IF YKEYWD IS SPECIFIED.

(3) COMMAND: EDIT 'DSNA.ME' FORT/COBOL/ASM
LINESIZE('VALUE')/LRECL('VALUE')
NUM/NONUM

REQUIRED - 'DSNAME', A DATASET NAME.
DEFAULTS - FORT, NUM, 'VALUE'=80

INTEGER*2 DSN(22),MEM(4),PASS(4),LEN(3-
CALL PARDSN(DSNMEMPASS.LEN.1,1,

* '/NAME OF DATASET TO BE EDITED./')
CALL PARKEY(ITYPE,'/FORT/')
CALL PARN.AM('/FORT/')
CALL PARNAM('/COBOL/')
CALL PARNAM('/ASM/')
CALL PARKEY(ILINE)
CALL PARNAM('/LINESIZE/',14,'/LRECL/')
CALL PARKEY(NUM,'/NUM/')
CALL PARNAM('/NUM/')
CALL PARNAM('/NONUM/')
CALL PARSUB(14)
CALL PARDEC(LINE,1)
LINE=80
CALL PARSE(IR)

NOTES: DEFINITION OF SUBFIELD 14 FOLLOWS THE DEFINITION OF ALL MAIN
COMMAND PARAMETERS. 14 WAS ARBITRARY.

'/LRECL/' IS DEFINED AS AN ALIAS OF '/LINESIZE/'. SINCE ITS "
VALUE IS NUMERIC, PARDEC IS CALLED RATHER THAN PARPOS. BECAUSE
IT IS NOT REQUIRED, ITS VALUE IS DEFAULTED TO 80. PARSE DOES NOT
CHANGE THE NUMERIC FIELD, IF THE KEYWORD IS NOT USED. IF PARPOS
WAS USED, DEFAULTS MUST BE SPECIFED AFTER PARSE IS CALLED, SUCH
AS IF (ILINE.EQ.0) LINE80-

REFERENCES/ACKNOWLEDGEMENTS:
NONE ".

38

• . --...'..,- .. -. - -y . -. . 4. . . . . . . . . . . . . . . . . . . . .- - -

" .. ._ .. .. ,- ,. 4 ,,,.- .... , . .. .. .... . . . ... .



APPENDIX A

PROGRAM: QUIT CATEGORY #: Z

CATEGORY: ALL OTHERS

TITLE:
TERMINATES A FORTRAN PROGRAM WRITTEN AS A COMMAND PROCESSOR,
SUPPLIES A RETURN CODE FOR THE PROCESSOR OR OPTIONALLY TRANSMITS
ALPHAMERIC INFORMATION BACK TO A CALLING COMMAND.

TYPE: S SOURCE: AS DATE LAST CHG: 800805

AUTHOR: BILL JACOB, IBM, MODIFIED BY WALTER C. BODYCOMB, IBM

PURPOSE:
TO CONFORM TO TSO RETURN CODE STANDARDS AND MAKE THESE AVAILABLE IN
COMMANDS BEING ACCESSED IN CLISTS. WITH &LASTCC. ALTERNATIVELY, QUIT
CAN SUPPLY THE RETURN CODE TO A CALLING COM!AND AND ALSO TRANSMIT
CHARACTER INFORMATION BACK TO THE COMMAND.

CALLING SEQUENCE:
CALL QUIT(IRC)
CALL QUIT(IRC.ARGLEN,ARGDAT)

ARGUMENTS:
NAME TYPE DIM DESCRIPTION
IRC INT*4 NO INPUT VARIABLE WHICH SUPPLrES THE DESIRED RETURN

CODE AFTER THE TERMINATION OF THE PROGP-AM. IF
'ARGLEN' = 0 OR IS NOT INCLUDED IN THE (,ALL, 'IRC'
IS ALSO ACCESSABLE BY THE &LASTCC VARI ')LE OF A
CALLING CLIST. IF 'ARGLEN' > 0, THE RErURN CODE IS
NOT ACCESSABLE WITH &LASTCC IN A CLIST.

ARGLEN INT*4 NO THE LENGTH OF 'ARGDAT' IN BYTES. IF 'ARGLEN' 0,

THE CALL IS EQUIVALENT TO CALL QUIT(IRC).
ARGDAT CHAR ARGLEN THE CHARACTER DATA TO BE TRANSMITTED BACK TO A

BYTES CALLING COMMAND VIA THE SUBROUTINE "COMAND". IF
'ARGLEN' = 0, THE CALL IS EQUIVALENT TO
CALL QUIT(IRC).

RESTRICTIONS:
1. SUBROUTINE CAN ONLY BE USED IN A MAIN PROGRAM EXECUTED VIA TSO AS A

COMMAND OR BY THE "CALL" COMMAND.
2. 'ARGLEN' AND 'ARGDAT' ARE MEANINGFUL ONLY IF THIS ROUTINE IS IN A

COMMAND THAT IS CALLED BY ANOTHER COMMAND BY SUBROUTINE 'COMAND'. IN
THAT CASE, THE RETURN CODE 'IRC' IS NOT IN THE REGISTER ACCESSED BY
&LASTCC OF A CLIST. TO PROVIDE A CORRECT RETURN CODE FOR CLIST
USAGE AT ALL TIMES, SUPPLY A COMMAND WITH AN ALIAS TO BE USED ONLY
WHEN IT IS CALLED FROM ANOTHER COMMAND, AND FORCE 'ARGLEN' = 0 IF
THAT NAME IS NOT USED. THE NAME USED TO CALL A COMMAND IS AVAILABLE
IN THE PROGRAM AS AN OPTION ARGUMENT IN SUBROUTINE PARSE.

REFERENCES/ACKNOWLEDGEMENTS:
NONE

-O

39 "

. . • , - .• o-. -•-.. . -- - - --, " A



7.. 1

APPENDIX A

PROGRAM: TSPTGT CATEGORY #: Z

CATEGORY: ALL OTHERS

TITLE:
WRITES MESSAGES TO AND GETS MESSAGES FROM A TERMINAL IN TSO COMMANDS,
USING PUTLINE, GETLINE, OR PUTGET (IN PROMPT MODE).

TYPE: S SOURCE: AS DATE LAST CHG: 810127

AUTHOR: WALTER C. BODYCOMB, IBM

PURPOSE:
ALLOWS A WRITER OF TSO COMMANDS TO MAKE NEARLY FULL USE OF THE PUTLINE,
GETLINE AND PUTGET FACILITIES. THIS INCLUDES:

(1) - INCLUDING MSGIDS SUBJECT TO THE MSGID/NOMSGID CHARACTERISTICS OF
THE UADS PROFILE.

(2) - WRITE MULTILEVEL MESSAGES, EACH OF WHICH WILL BE FOLLOWED BY A
PLUS ("+"). A HIGHER LEVEL MESSAGE IS DISPLAYED IF THE USER
RESPONDS WITH "7".

(3) - FOLD INPUT AND OUTPUT TO UPPER CASE OR LEAVE AS IS.
(4) - WRITE OR RECEIVE MESSAGES SUBJECT TO A MSGiNOMSG AND PROMPT/

NOPROMPT CLIST CONTROL ENVIRONMENT.
(5) - INHIBIT PRINTING THE RESPONSE OF A USER PUTGET PROMPT.
(6) - INHIBIT A CARRIAGE RETURN AFTER PRINTING A MESSAGE.
(7) - SOUND A BEEP, SUBJECT TO MSG/NOMSG CLIST CONTROL OR NOT.

CALLING PROCEDURE:
CALL TSPTCT(IRC,IECIOP,ARG...) (PUTLINE)
CALL TSPTGT(IRC,IEC,IOP.AREANLEN) (GETLINE)
CALL TSPTGT(IRC,IECIOP,AREA,NLENARG...) (PUTGET)
CALL TSPTGT(IRC,IEC) (PURGE, FORCE, OR BEEP)

ARGUMENTS:
NAME TYPE DIM DESCRIPTION
IRC INT NO OUTPUT RETURN CODE AS FOLLOWS:

-6 INVALID PARAMETERS PASSED TO TSO
GETLINE/PUTLINE/PUTGET (ERROR IN TSPTGT).

-5 INVALID PARAMETERS PASSED TO TSPTGT:
A. INVALID ENTRY CODE.
B. NO OUTPUT MESSAGE WITH PUTLINE OR PUTGET.
C. MORE THAN 2 MESSAGE LEVELS WITH A MULTI-

LEVEL PUTLINE (WITHOUT THE DATA OPTION).
D. MSGIDS SPECIFIED BUT THE FIRST LEVEL

MESSAGE HAS NONE.
-4 INSUFFICIENT MAIN STORAGE AVAILABLE.
-3 THE MESSAGE LENGTH FOR A MESSAGE OR DATA LEVEL

EXCEEDED 254 CHARACTERS.
-2 TSPTGT WAS NOT CALLED FROM A TSO COMMAND.
-1 GETLINE OR PUTGET ATTEMPTED AND THE IN-STORAGE

LIST (NOT A COMMAND PROCEDURE) HAS BEEN
EXHAUSTED. NLEN IS SET TO 0 AND NO DATA IS
RETURNED.

0 SUCCESSFUL COMPLETION.
I PUTGET OR GETLINE WITH TERM OPTION (IOP=32) WAS

REQUESTED BUT:

40

, .- -o- **,,* -- .<.-.-•*,- .. " -.'-.' -•--*., .--.-. -*•--



APPENDIX A

PROGRAM: TSPTGT CATEGORY #: Z

ARGUMENTS: CONTINUED
A. NOPROMPT MODE IS CURRENTLY ACTIVE IN THE

USERS ENVIRONMENT (PUTGET ONLY).
B. THE CURRENT SOURCE OF INPUT IS AN IN-STORAGE

LIST (NOT A COMMAND PROCEDURE).
C. THE COMMAND IS RUNNING UNDER THE BACKGROUND

TMP IN A COMMAND PROCEDURE BUT NO DATA
PROMPT... ENDDATA GROUP WAS PROVIDED.

2 THE SIZE OF THE INPUT BUFFER SPECIFIED IN 'NLEN'
IS NOT BIG ENOUGH TO HOLD THE ENTIRE MESSAGE
ENTERED AT THE TERMINAL. THE INPUT IS
TRUNCATED TO THE VALUE SPECIFIED BY NLEN AT
THE ENTRY TO TSPTGT, AND NLEN IS SET TO THE
SIZE OF THE MESSAGE BEFORE TRUNCATION.

3 THE USER SIGNALLED ATTENTION.
4 THE TERMINAL HAS BEEN DISCONNECTED.

IEC INT NO FACILITY REQUEST CODE AS FOLLOWS:
1 PUTLINE REQUEST. SEND A SINGLE OR TWO-LEVEL

. MESSAGE, OR A SINGLE OR MULTILINE DATA LINE TO
A TERMINAL.

2 GETLINE REQUEST. GET A LINE OF INPUT FROM A
TERMINAL (OR IN-LINE CLIST DATA... ENDDATA OR
DATA PROMPT...ENDDATA GROUP).

%%% 3 PUTGET (PROMPT) REQUEST. SEND A SIN;LE OR MULTI-
LEVEL MESSAGE TO A TERMINAL AND GET A LINE IN
RESPONSE FROM THE TERMINAL (OR IN-LINE ZLIST
DATA PROMPT.. .ENDDATA GROUP).

4 PURGE REQUEST. DELETE ALL EXISTING SECOND AND
HIGHER LEVEL MESSAGES.

5 FORCE REQUEST. PRINT ALL EXISTING SECOND AND
HIGHER LEVEL MESSAGES.

6 BEEP REQUEST. SOUND THE ALARM ON 3277 TYPE
TERMINALS. THIS REQUEST (OR SERIES OF REQUESTS)
SHOULD BE FOLLOWED BY A PUTLINE OR PUTGET. THIS
REQUEST IS NOT AFFECTED BY CLIST MSG/NOMSG.

lOP INT NO THE OPTION CODE. THE CODE IS FORMED BY ADDING THE

DESIRED VALUES FROM THE FOLLOWING LIST (IF NONE ARE
DESIRED, lOP MUST BE ZERO):
1 MSGIDS ARE INCLUDED (E.G., IEF247I FOLLOWED BY A

BLANK).
2 THIS IS A MULTILEVEL MESSAGE (THE USER CAN ENTER

? AND GET MORE INFORMATION), OR MULTILINE DATA.
4 FOLD OUTPUT TO UPPERCASE.
8 FOLD INPUT TO UPPERCASE.
16 PUTGET - NOPRINT OPTION. INHIBIT PRINTING WHEN

THE USER ENTERS REPLY.
PUTLINE - DATA OPTION. OUTPUT LINES ARE DATA

LINES, NOT MESSAGES. OUTPUT IS UNAFFECTED BY
MSGID/NOMSGID, MSG/NOMSG, OR 2-LEVEL MAXIMUM
(IEC=-5). MULTIPLE LINES ARE PRINTED
IMMEDIATELY.

32 GETLINE - TERM OPTION. THIS CAUSES GETLINE TO
RESPOND TO COMMAND PROCEDURE DATA PROMPT GROUPS
RATHER THAN TO DATA GROUPS. IT IS NOT AFFECTED
BY PROFILE OR CLIST CONTROL PROMPT/NOPROMPT.

PUTLINE/PUTGET - NORETURN OPTION. NO CARRIAGE

41



APPENDIX A

PROGRAM: TSPTGT CATEGORY #: Z

ARGUMENTS: CONTINUED
RETURN WILL BE DONE AT THE END OF THE OUTPUT
LINE(S).

64 BEEP OPTION. SOUND ALARM ON 3277 TYPE TERMINALS.
THIS OPTION MAY BE USED WITH PUTLINE OR PUTGET.
IF USED WITHIN A CLIST WITH CONTROL NOMSG, THE
ALARM WILL NOT BE SOUNDED (SEE NOTE 10).

128 NOATTENTION OPTION, USED WITH GETLINE AND PUTGET.
NO ATTENTION EXIT WILL BE SET UP. IF THE USER
SIGNALS ATTENTION. IT WILL BE TREATED AS A
"LINE DELETE". (SEE NOTE 11.)

AREA CHAR YES A CONTIGUOUS AREA INTO WHICH THE DATA IS TO BE READ
FROM THE TERMINAL. IF THE AMOUNT OF DATA IS > 0 BUT
< THE LENGTH OF THE AREA, THE REMAINING SPACE IS
FILLED WITH BLANKS.

NLEN INT NO THE NUMBER OF BYTES IN AREA. AFTER A SUCCESSFUL READ,
NLEN CONTAINS THE LENGTH OF THE DATA READ FROM THE
TERMINAL.

ARG CHAR AS CONSISTS OF ZERO OR MORE ARGUMENTS WHICH SPECIFY THE
OR NEEDED MESSAGE TO BE SENT. SEVERAL FORMATS, WHICH CAN BE
INT SINGLY OR IN COMBINATION. ARE ALLOWED:

1. A 'SELF-DEFINING' CHARACTER STRING. THE FIRST
CHARACTER OF THE STRING IS TAKEN TO BE A
DELIMITER AND TSPTGT FINDS THE END OF THE STRING
BY SEARCHING FOR THE NEXT OCCURANCE OF THE SAME
CHARACTER (WHICH SHOULD BE SOME PRINTAF-E
CHARACTER). THE STRING THUS FOUND IS IDDED TO THE
MESSAGE. A NULL STRING (NO CHARACTERS BETWEEN THE
DELIMITERS) CAUSES TSPTGT TO STOP EXAMINING THE
ARGUMENTS IN THE CALL STATEMENT AND IMMEDIATELY
PRINT THE MESSAGE. REMAINING ARGUMENTS, IF ANY,
ARE IGNORED.

2. A 'DOUBLE ARGUMENT' CHARACTER STRING. TWO
ARGUMENTS ARE USED. THE FIRST IS A POSITIVE
FULLWORD INTEGER GIVING THE NUMBER OF CHARACTERS
IN THE STRING. THE SECOND IS THE CHARACTER
STRING WHICH IS TO BE ADDED TO THE MESSAGE.
POSITIVE INTEGER ARGUMENTS WHICH ARE NOT
FOLLOWED IMMEDIATELY BY CHARACTER ARGUMENTS ARE
IGNORED.

3. FULLWORD INTEGER EQUAL TO ZERO. CAUSES TSPTGT
TO STOP EXAMINING THE ARGUMENTS IN THE CALL
STATEMENT AND IMMEDIATELY PRINT THE MESSAGE.
REMAINING ARGUMENTS, IF ANY, ARE IGNORED.

4. FULLWORD INTEGER EQUAL TO NEGATIVE ONE. CAUSES
TSPTGT TO STOP EXAMINING THE ARGUMENTS IN THE CALL
STATEMENT AND TO 'HOLD' THE CURRENT CONTENTS OF
THE MESSAGE. ON A SUBSEQUENT CALL TO TSPTGT THE
MESSAGE MAY BE ADDED TO, OR PRINTED, OR BOTH.
ONCE THE NEGATIVE ONE IS FOUND, THE REMAINING
ARGUMENTS IN THE CALL STATEMENT, IF ANY, ARE
IGNORED.

5. IF NO ARGUMENTS OTHER THAN THE RETURN CODE, ENTRY
CODE, OPTION CODE (AND AREA A ND NLEN FOR PUTGET)

42

. • . . . . . . . .



APPENDIXA

PROGPM: TSPTGT CATEGORY : Z

ARGUMENTS: CONTINUED .'
VARIABLES ARE PROVIDED TO TSPTGT, IT PRINTS THE
CURRENT CONTENTS OF T!PE BUFFER.

RESTRICTIONS:
SPECIFIED BY THE ERROR RETURN CODE, IRC.

REFERENCES/ACKNOWLEDGEMENTS:
IBM MANUAL GC28-0648, "OS/VS2 TSO GUIDE TO WRITING A TERMINAL MONITOR
PROGRAM OR A COMMAND PROCESSOR." HOWEVER. THE FOLLOWING NOTES ON THE
USE OF TSPTGT MAY BE HELPFUL:
1. TSO GETLINE, PUTLINE, AND PUTGET RESPOND TO THE TSO ENVIRONMENT

AS SET UP BY THE PROFILE COMMMAND (MSGID;NOMSGID, PROMPT/NOPROMPT),
CLIST CONTROL (MSG/NOMSG, PROMPT/NOPROMPT), AND CLIST IN-LINE DATA
AND PROMPT DATA GROUPS:

GETLINE - (WITHOUT TERM OPTION) CONTROLLED BY CLIST DATA..ENDDATA.
WHEN USED BY A COMMAND IN A COMMAND PROCEDURE, THE
COMMAND MUST BE FOLLOWED BY A DATA... ENDDATA GROUP.
(WITH TERM OPTION, IOP=32) CONTROLLED BY CLIST DATA
PROMPT...ENDDATA.

PUTLINE - (WITHOUT THE DATA OPTION) CONTROLLED BY PROFILE
MSGID/NOMSGID AND CLIST MSG.,NOMSG.

PUTGET - CONTROLLED BY PROFILE PROMPT/NOPROMPT, MSGID/NOMSGID
AND CLIST MSG/NOMSG, PROMPT/NOPROMPT, DATA PROMPT...
ENDDATA.

2. IF MULTILEVEL MESSAGES OR DATA LINES ARE SPECIFIED (IOP=2) THEN
EACH OCCURRENCE OF ARG (OR 'DOUBLE ARG') IS CONSID.RED TO BE A NEW
LEVEL OF MESSAGE. THIS INCLUDES THE USE OF MULTIILE CALLS (-I AS
THE LAST ARGUMENT) TO BUILD MULTIPLE MESSAGE LEVELS.

3. MSGIDS MAY BE ANY LENGTH, MUST HAVE NO IMBEDDED BLANKS, AND MUST
BE FOLLOWED BY A BLANK. MSGIDS ARE SPECIFIED ON THE FIRST-LEVEL
MESSAGES, BUT NOT ON SUBSEQUENT LEVELS. MSGIDS ARE NOT SPECIFIED
WITH PUTLINE WITH THE DATA OPTION (IOP=16).

4. MULTIPLE PUTGET CALLS USED TO BUILD A SINGLE MESSAGE OR SET OF .-
MESSAGE LEVELS MUST INCLUDE AREA AND NLEN ON EACH CALL, EVEN THOUGH
DATA WILL BE RETURNED ONLY ON THE LAST CALL. (NLEN WILL NOT BE
CHANGED UNTIL THE LAST CALL.)

5. PUTLINE (WITHOUT THE DATA OPTION) CAN HAVE ONLY TWO LEVELS OF
MESSAGE, WHILE PUTLINE DATA (IOP=16) AND PUTGET CAN HAVE MULTIPLE
LEVELS.

6. BY TSO CONVENTION, ALL MULTILEVEL MESSAGES EXCEPT THE LAST END
WITH A " " TSPTGT WILL INSERT THE + AUTOMATICALLY UNLESS THE
CALLER HAS ALREADY PROVIDED IT (MULTILINE DATA LINES DO NOT HAVE
A 4.)

7. COMMANDS USING GETLINE AND PUTGET IN A COMMAND PROCEDURE WITH DATA

OR DATA PROMPT GROUPS MUST BE ABLE TO RECOGNIZE THE LAST LINE OF
INPUT SINCE THERE IS NO RETURN CODE FOR "END OF DATA". IF THE END
OF DATA NOT RECOGNIZED, THE NEXT PUTGET OR GETLINE (WITH THE TERM
OPTION (IOP=32)) WILL GO TO THE TERMINAL, WHILE THE NEXT GETLINE
WITHOUT THE TERM OPTION WILL GET THE NEXT LINE IN THE COMMAND
PROCEDURE.

43

..".-. -..,

, : '-'. . .. .. .. .



APPENDIX A

PROGRAM: TSPTGT CATEGORY 7: Z

REFERENCES/ACKNOWLEDGEMENTS:
8. SECOND LEVEL MESSAGES ISSUED BY PUTLINE (WITHOUT THE DATA OPTION)

ARE CHAINED BY TSO AND KEPT THROUGHOUT THE EXECUTION OF A COMMAND
OR SUBCOMMAND UNLESS PRINTED (FORCE REQUEST) OR PURGED (PURGE
REQUEST). COMMAND PROCESSORS USING PUTLINE (WITHOUT DATA OPTION)
SECOND LEVEL MESSAGES SHOULD BE CAPABLE OF RECOGNIZING A "?" FROM
THE USER AND RESPONDING WITH A TSPTGT FORCE CALL (BUT SEE NOTE 9).

9. ON ALL GETLINE REQUESTS, TSPTGT WILL-CHECK THE INPUT FOR "?" BEFORE

RETURNING. IF A ? (ONLY) IS FOUND, TSPTGT WILL ISSUE A FORCE (TO
PRINT ANY EXISTING SECOND LEVEL MESSAGES) AND THEN REISSUE THE
GETLINE.

10. THE BEEP OPTION (IOP=64) HAS VARYING EFFECTS, AS FOLLOWS:
PUTLINE WITH THE DATA OPTION (IOP=16) ALWAYS SOUNDS THE TERMINAL
ALARM AND PRINTS THE MESSAGE(S).

PUTGET AND PUTLINE WITHOUT THE DATA OPTION WILL NOT SOUND THE .7i
ALARM (OR PRINT THE MESSAGE(S)) IF USED IN A CLIST WITH CONTROL
NOMSG ACTIVE.

11. NORMALLY THE LAST ATTENTION EXIT SET UP IS THE ONLY EXIT WHICH WILL
GET CONTROL IF THE USER SIGNALS A SINGLE ATTENTION. IN THE FOLLOWING
SEQUENCE, TSPTGT WILL RECEIVE CONTROL AND RETURN THE ATTENTION CODE
(IRC=3) TO THE CALLER:

COMMAND CALLS ATTEN (SETTING UP ATTENTION EXIT.)
COMAND CALLS TSPTGT (GETLINE REQUEST.)

(TSPTGT SETS UP THE ATTENTION EXIT AND WAITS FOR INPUT.)
USER SIGNALS ATTENTION.

IF THE CALLER OF TSPTGT WISHFS HIS OWN ATTENTION EXIT TO GET
CONTROL, HE MUST SPECIFY IOP=128. AN EXCEP"ION TO THE NORMAL
SCHEDULING OF ATTENTION EXITS OCCURS WHEN "UNNING IN A CLIST WITH
AN ACTIVE ATTN GROUP. AN ACTIVE ATTN GROUP TAKES PRECEDENCE OVER
ALL ATTENTION EXITS.

12. AN UNRECOGNIZED RETURN CODE FROM TSO PUTLINE, GETLINE, OR PUTGET
WILL CAUSE A USER 100 ABEND WITH THE DUMP OPTION.

,..5

44

- .



- ...?U

-. '.-."Appendix B.-Example of Command SYSOUT

b ' *.

49;-

.--:45

,.*.,.. . . . . . . 4. ..- -



\ .. .. L -.. -'. - -' '.' '-' : -: . ". - " ." " . -D _ ., - - ... V.- " ' : ;- " - . " " . . .

APPENDIX B

C THIS LISTING ILLUSTRATES THE PRINCIPLES OF WRITING COMMANDS IN FORTRAN
SUBROUTINE SYSOUT
IMPLICIT INTEGER(A-Z)

C
C SYSOUT IS A COMMAND TO MAKE SYSOUT ALLOCATIONS ON TSO. THE SYNTAX IS:
C SYSOUT 'DDNAME' CLASS('CLASS-) DEST('RMTDEST')
C USING('ATTRNAME') COPIES('NUMBER') CLOSE REUSE
C FORM('FORMNAME') HOLD/NOHOLD ..
C WHERE ,:

C 'DDNAME' - IS THE DDNAME ASSIGNED TO THE ALLOCATION (REQUIRED).
C CLASS('CLASS') - DEFINES THE SYSOUT CLASS OF THE ALLOCATION. THE
C DEFAULT IS A.
C DEST('RMTDEST') - SPECIFIES THE REMOTE WORKSTATION TO PROCESS THE
C SYSOUT FILE. THE DEFAULT IS THE USER'S DEFAULT
C DESTINATION.
C USING('ATTRNAME') - SPECIFIES A DUMMY FILE, SUCH AS MAY BE SET UP
C WITH THE ATTRIBUTE COMMAND, TO COPY THE DCB FROM. THE
C DEFAULT ASSIGNS NO DCB. 71
C COPIES('NUMBER') - PERMITS THE NUMBER OF COPIES TO BE SPECIFIED
C (FROM I TO 255). THE DEFAULT IS 1.
C CLOSE - SPECIFIES THAT THE FILE SHOULD BE UNALLOCATED WHEN IT
C IS CLOSED. THE DEFAULT REQUIRES THE USER TO
C UNALLOCATE IT. (THE FILE MUST BE UNALLOCATED BEFORE IT
C IS PROCESSED.)
C REUSE - SPECIFIES THAT 'DDNAME' SHOULD BE FREED IF IT IS
C ALREADY ALLOCATED.
C FORM('FORMNAME') - -ER.ITS THE USR TO SPECIFY A FORM TO BE USED.
C HOLD PLACES THE FILE IN THE HOLD QUEUE INSTEAD OF
C PROCESSING IT.
C NOHOLD PROCESSES THE FILE WHEN IT IS UNALLOCATED. THIS IS THE
C DEFAULT IF HOLD IS NOT USED.
C
C THE RETURN CODES ARE
C 0 - ALLOCATION SUCCESSFUL.
C IXX - PARSE FAILED WITH ERROR XX.
C > 500 - ALLOCATION FAILED. THE VALUE IS THE ERROR REASON CODE.
C TYPICAL REASONS ARE
C 1040 - 'DDNAME' IS IN USE.
C 1056 - 'DDNAME' IS OPEN AND CANNOT BE FREED.
C 1108 - 'ATTRNAME' CANNOT BE FOUND.
C 1132 - 'RMTDEST' IS NOT A LEGAL REMOTE STATION NAME.
C
CREATE THE DYNAMIC ALLOCATION TEXTS AND OTHER VARIABLES.

INTEGER*2 DD(7)/1,1,5*0/, SYS(4)/24,1,1,0/, A/'A'/,
DEST(7)/88,1,5*0/, HOLD(2)/89,0/, DCB(7)/45,1,5*0/,

• CLOSE(2)/28,0/, COPY(4)/29,1,1,0/, FORM(5)/26,1,3*0/,
PERM(2)/82,0/, UNALLC(2)/7,0/, COPIES(2)
EQUIVALENCE (COPIES(1),COP)

C
COMMENCE THE PARSE.
C
CALL FOR REQUIRED POSITIONAL PARAMETER, DDNAME.

CALL PARPOS(DD(4),LDD,'/DDNAME/',1,17,8,1,3,'/DDNAME/')
CALLS FOR KEYWORD "CLASS".

CALL PARKEY(ICLASS)
CALL PARNAM('/CLASS/'.1)

CALLS FOR KEYWORD "COPIES" ("COPY" ALSO ACCEPTED).

47

• I .o. - ° -.. . . . . o. . . . . .. . . ... . ... . ... . . . . -



APPENDIX B

CALL PARKEY(INFO)
CALL PARNA.M('/COPIES/'.2,'/COPY/')

CALLS FOR KEYWORD "DEST".
CALL PARKEY(IDEST)
CALL PARNAM('/DEST/',3)

CALLS FOR KEYWORDS "HOLD" AND "NOHOLD" WITH DEFAULT OF "NOHOLD".
CALL PARKEY(IHOLD,'/NOHOLD/')
CALL PARNAM('/HOLD/')
CALL PARNAM('/NOHOLD/')

CALLS FOR KEYWORD "CLOSE".
CALL PARKEY(ICLOSE)
CALL PARNAM('/CLOSE/')

CALLS FOR KEYWORD "USING".
CALL PARKEY(IUSING)
CALL PARNAM('/USING/',4)

CALLS FOR KEYWORD "REUSE".
CALL PARKEY(IREUSE)
CALL PARNAM('/REUSE/')

CALLS FOR KEYWORD "FORM".
CALL PARKEY(IFORM)
CALL PARNAM('/FOPM/',5)

CALLS TO SET THE VALUE OF "CLASS" AS SPECIFIED BY THE USER.
CALL PARSUB(1)
CALL PARPOS(SYS(4),IERR '/SYSOUT CLASS/',1,1,1,5,5,
'/SYSOUT CLASS/')

CALLS TO SET THE VALUE OF "COPIES" AS SPECIFIED BY THE USER.
CALL PARSUB(2)
CALL PARDEC(COP,l)

COP DEFAULTS TO 1 iF THE USER DO:S NOT SPECIFY THIS KEYWORD.
COP=I

CALLS TO SET THE VALUE OF "DEST" AS SPECIFIED BY THE USER.
CALL PARSUB(3)
CALL PARPOS(DEST(4).LDEST,'/DEST/',I,17.8,3.3,'/DEST/')

CALLS TO SET THE VALUE OF "DCB" AS SPECIFIED BY THE USER.
CALL PARSUB(4)
CALL PARPOS(DCB(4),LDCB,'/ATTRNAME/',1,17,8,1,3,'/ATTRNAME/')

CALLS TO SET THE VALUE OF "FORM" AS SPECIFIED BY THE USER.
CALL PARSUB(5)
CALL PARPOS(FORM(4),FORM(3),'/FORM NAME/',1,I,4,3,3,'/FORM NAME/')

CALL TO SET ALL THE VALUES ENTERED BY THE USER.
CALL PARSE(IER)

CHECK IF PARSE WAS SUCCESSFUL.
IF (IER.EQ.0) GOTO 10

CHANGE RETURN CODE FOR UNSUCCESSFUL PARSE.
LC=100+IER

CONVERT TO CHARACTER FORM SURROUNDED BY SLASHES.
CALL TSINT(IER,DD)

CONVEY FAILURE TO USER (WITH BEEP).
CALL TSPTGT(IER,1.64,'/SYSOUT PARSE FAILED WITH ERROR /',DD,'/./')

CONCLUDE COMMAND WITH RETURN CODE LC.
5 CALL QUIT(LC)

C
CORRECT LENGTH TEXTS FOR DYNALC.

10 DD(3)=LDD
DEST(3)=LDEST
DCB(3)=LDCB

C
CHECK FOR REUSE.

48

: :::::::!::' . :. - .

., . :i. f, . - .: .- • "- .'-,-. .. , , ... .... ,..... v, -.... ,



APPENDIX B

IF (IREUSE.EQ.0) GOTO 15 J
CALL TO UNALLOCATE THE DDN.4ME. *01

CALL DYNALC(2.IERLC,INFO.0,DDUNALLC)
CONTINUE IF FREED OR IF DDN.ME WAS NOT ALLOCATED (ERROR 1080).

IF (IER.EQ.O.OR.LC.EQ.1080) GOTO 15
COMMUNICATE ERROR.

CALL DYNALE
GOTO 5

C
CORRECTIONS FOR OTHER KEYWORDS.
C
CHECK ON USING KEYWORD. DISABLE TEXT IF KEYWORD IS NOT SPECIFIED.

15 IF (IUSING.EQ.0) DCB(1)=O
CHECK ON DEST KEYWORD. DISABLE TEXT IF KEYWORD IS NOT SPECIFIED.

IF (IDEST.EQ.O) DEST(1)=O
CHECK ON CLASS KEYWORD. DEFAULT TO CLASS(A) IF KEYWORD IS NOT SPECIFIED.

IF (ICLASS.EQ.0) SYS(4)=A
CHECK ON CLOSE KEYWORD. DISABLE TEXT IF KEYWORD IS NOT SPECIFIED.

IF (ICLOSE.EQ.0) CLOSE(1)=O
CHECK ON COPIES KEYWORD. ADJUST LIMITS.

IF (COP.LT.1) COP=I
IF (COP.GT.255) COP=255

COPY LAST BYTE OF COP TO COPY(4). FIRST MOVE BINARY VALUE ONE BYTE LEFT.
COP=COP*256
COPY(4)=COPIES(2)

CHECK ON HOLD KEYWORD. DISABLE TEXT IF NOHOLD DEFAULTED OR SPECIFIED.
IF (IHOLD.EQ.2) HOLD(1)0-

CHECK ON FORM KEYWORD. DISABLE TEXT IF KEY .RD IS NOT SPECIFIED.
IF (IFORMEQ.0) FOPM(1)=O

C
CAREFULLY ALLOCATE THE SYSOUT FILE. RETURN CODE SET TO REASON CODE.

CALL DYNALC(I,IERLCINFO,O,DD,SYSDESTHOLDDCB,CLOSE,COPY,FORM,
PERM)

C
CONCLUDE IF ALLOCATION WAS OK. ERROR MESSAGE IF NOT.

IF (IER.NE.0) CALL DYNALE
GOTO 5
END

49

Lk ' . . ,, , . i . , -, : . . ' . -,--i, -i . . .. .- °.. •.. . . .,.•-.



Appendix 0.-Example of Command READN

51

LN



APPENDIX C

SUBROUTINE READN
IMPLICIT INTEGER (A-Z)

C READN IS A COMMAND FOR CLIST USE ONLY THAT PROMPTS FOR A SINGLE LINE
C OF INPUT OF AT MOST 72 CHARACTERS. SUPPRESSING PRINTING ON IBM 3270-
C TYPE TERMINALS. A CLIST VARIABLE IS SET TO THE ENTERED STRING. THE
C ENTIRE PROCESS CAN BE PRECEDED BY UP TO 5 LEVELS OF PROMPTING
C MESSAGES. THE SYNTAX IS:
C READN 'CLISTVARNkME' ''MSGI' ''MSG2' 'MSG3' 'MSG4' MSG5''
C NORETURN/RETURN
C WHERE
C 'CLISTVARNAME' IS THE NAME OF THE CLIST VARIABLE TO BE SET TO THE
C INPUT STRING. IT MUST BE PRESET IN THE CLIST TO A
C STRING WITH AT LEAST AS MANY CHARACTERS AS EXPECTED
C IN RESPONSE TO THE PROMPT. IT MUST ALSO NOT BE A
C GLOBAL VARIABLE OR A SYSTEM VARIABLE.
C "'MSG1'' AND ALL OTHER MESSAGES ARE PROMPTING MESSAGES. IF ''MSG2''
C IS USED, ''MSGI'' WILL END WITH A " ", AND ''MSG2''
C WILL BE DISPLAYED ONLY IF THE USER ENTERS "?". THE
C SAME APPLIES TO OTHER MESSAGES. IF "?" IS NOT ENTERED
C THE REMAINING MESSAGES ARE DISCARDED. EACH MESSAGE IS
C LIMITED TO 254 CHARACTERS.
C RETURN RETURNS THE CURSER TO A NEW LINE FOR THE RESPONSE TO
C THE PROMPT. THIS IS THE DEFAULT IF NEITHER NORETURN
C NOR RETURN IS SPECIFIED.
C NORETURN REQUESTS THE CURSER TO REMAIN ON THE SAME LINE AS THE
C PROMTING MESSAGE.
C
C THE CLIST USING THIS COMMAND MUST HAVE
C CONTROL PROMPT
C IN EFFECT. ANY ERROR MESSAGE IS DISPLAYED ONLY IF
C CONTROL MSG
C IS IN EFFECT.
C
C THE RETURN CODES ARE:
C 0, SUCCESSFUL PUTGET AND CLIST VARIABLE SETTING.
C 1, INPUT WAS TRUNCATED TO 72 CHARACTERS AND THE RESULT
C WAS SUCCESSFULLY TRANSMITTED TO 'CLISTVARNAME'.
C 4, CALLER WAS NOT IN A CLIST.
C 6, 'CLISTVARNAME' WAS NOT PREDEFINED IN THE CLIST.
C 7. 'CLISTVARNAME' WAS NOT A CORRECT VARIABLE TYPE.
C 8, 'CLISTVARNAME' WAS NOT PREDEFINED WITH A LONG ENOUGH

C STRING.
C 12, CONTROL PROMPT WAS NOT IN EFFECT IN THE CLIST.
C 20, THE USER HIT ATTENTION AS THE PROMPT INPUT.
C 24, THERE IS A BUG IN THE TSPTGT SUBROUTINE. PLEASE CALL
C PROGRAMMING ASSISTANCE.
C 28, THE TERMINAL WAS DISCONNECTED.
C 1XX, THE PARSE FAILED WITH ERROR XX. SEE SUBROUTINE PARSE.
C
CREATE DIMENSIONED VARIABLES AND INITIALIZE.

INTEGER*4 LMSG(5),I/'TEST'/
LOGICAL*1 MSG(254,5),VAR(31),PWD(72),FLAG/.FALSE./,TMSG(72)

C
CHECK FOR CLIST USE.

CALL GETCSV(I,4,MSG,LMSG,LC)
IF (LC.EQ.4) GOTO 40

C

53

. . . . . . . .. . . . . .i ;.. . . . .. ..... ... . .



APPENDIX C

COMMENCE THE PARSE.
CLIST VARIABLE NAME TO BE SET IS A POSITIONAL PARAMETER.

CALL PARPOS(VAR,LVAR,'/CLIST VARIABLE NAME/',1,17,31,4,5,
'/CLIST VARIABLE NAME/')

IN CALL TO DEFINE THE FIRST STRING TO BE WRITTEN TO THE TERMINAL.
CALL PARSTR(MSG,LMSG,254,18,'/ '' ')

CALLS TO ALLOW FOUR ADDITIONAL LEVELS OF MESSAGES.
DO 2 I=2,5

2 CALL PARSTR(MSG(1,I),LMSG(I),254,16)
CALLS FOR RETURN/NORETURN KEYWORDS (RETURN DEFAULTED).

CALL PARKEY(IRET,'/RETURN/')
CALL PARNAM('/RETURN/')
CALL PARNAM('iNORETURN/')

CONCLUDE PARSING.
CALL PARSE(IER)

CHECK FOR SUCCESSFUL PARSE. SEND ERROR MESSAGES IF IT FAILS.
IF (IER.EQ.0) GOTO 10
LC=100+IER
CALL TSINT(IER,MSG)
CALL TSPTGT(IER,1.64,'/READN PARSE ERROR = /',MSG,'/./')

CONCLUDE COMMAND WITH RETURN CODE.
5 CALL QUIT(LC)

C
CHECK IF VAR IS IN THE CALLER'S CLIST PROPERLY.

10 CALL GETCSV(VAR.LVAR,TASGLTMSGLC)
GOTO (12,12,12.40,5,45,50),LC

12 LPWD=72

CORRECT lOP FOR Rl:TURN/NORETURN KEYWORDS.
LC=94
IF (IRET.EQ.2) LC=126

C
CALL TO PUTGET FACILITY TO COMMUNICATE MESSAGES AND AWAIT FOR REPLY.
C

CALL TSPTGT(IER,3,LC,PWD.LPWD,LMSG,MSG,LMSG(2),MSG(1,2),
* LMSG(3),MSG(1,3),LMSG(4),MSG(1,4),LMSG(5),MSG(1,5))

CHECK IF PUTGET WAS OK.
IF (IER) 15,?5,20

COMMUNICATE ACCURATE ERROR MESSAGES IF PUTGET FAILS.
15 LC=24

CALL TSPTGT(IER,1,64,'/TSPTGT ERROR IN READN - PLEASE CALL PROGRAM
*MING ASSISTANCE./')
GOTO 5

20 GOTO (21,23,24,25), IER
21 LC=12

CALL TSPTGT(IER,1,64,'/READN NOT USED IN PROMPT ENVIRONMENT./')
GOTO 5

CHANGE FLAG TO INDICATE TRUNCATION FOR LATER RETURN CODE.
23 FLAG=.TRUE.

LPWD=72
CALL TSPTGT(IER,1,64,'/READN INPUT TRUNCATED TO 72 CHARACTERS./')
GOTO 35

24 LC=20
GOTO 5

25 LC=28
GOTO 5

c
CHANGE THE CLIST VARIABLE VALUE TO THE STRING ENTERED.C "-

54



APPENDIX C

35 CALL SETCSV(VAR,LVAR,PWD,LPWDLC)
IF (LC.EQ.0) GOTO 38

COMMUNICATE ACCURATE ERROR MESSAGES IF SETCSV FAILS.
GOTO (5,5,5.40,5,45,50,55,5), LC

CORRECT RETURN CODE IF TRUNCATION LAD OCCURRED.
38 IF (FLAG) LC=I

GOTO 5
40 CALL TSPTGT(IER,1,64,'/READN USEABLE ONLY IN A CLIST./')

GOTO 5
45 CALL TSPTGT(IER,1,64,'/READN ERROR - /'

* LVAR,VAR,'/ IS NOT A CLIST VARIABLE./'i
GOTO 5

- . 50 CALL TSPTGT(IERI,64.'/READN ERROR - /',
* LVAR,VAR,'/ IS AN INCORRECT VARIABLE TYPE./')
GOTO 5

55 CALL TSINT(LTMSGMSG)
CALL TSPTGT(IER,1.64,'/READN ERROR - INPUT CANNOT EXCEED /',

* MSG,'/ CHARACTERS./')
' , GOTO 5

END

'..4-

4,,

.-4

.55

"AA
V . . .V o°. , o , "- j' k . . .- ° . .. ..

'4 Q . u °°
w °

" '"
"

"oq 
o

,".'","- " • . ' "" .. " "'-



OVA 57

-W



APPENDIX D

SUBROUTINE CMPRSS
IMPLICIT INTEGER (A-Z)

COMPRESS COMPRESSES A PDS IN THE FOREGROUND USING THE UTILITY SPFCOPY
C WHICH IS FUNCTIONALLY EQUIVALENT TO IEBCOPY. ITS SYNTAX IS:
C COMPRESS 'PDSNAME' VOLUME('VOLSER') OLD/RELEASE/SHR
C NOPRINT/PRINT
C WHERE
C PDSNAME' - IS THE NAME OF THE PDS'TO BE COMPRESSED.
C VOLUME('VOLSER') - SPECIFTES THE VOLUME ON WHICH PDSNAME' RESIDES.
C IF NOT SPECIFIED, A CATALOG SEARCH IS MADE.
C OLD - ALLOCATES 'PDSNAME' OLD AND DOES NOT RELEASE EXTRA
C SPACE. THIS IS THE DEFAULT IF NONE OF OLD, RELEASE, OR
C SHR IS SPECIFIED.
C RELEASE - ALLOCATES 'PDSNAME' MOD AND RELEASE EXTRA SPACE AFTER
C IT IS COMPRESSED. TO THE NEAREST TRACK.
C SHR - ALLOCATES 'PDSNKME' SHR AND DOES NOT RELEASE EXTRA

*C SPACE. EXTREME CAUTION SHOULD BE EXERCISED WITH THIS
C KEYWORD BY INSURING OTHER USERS ARE NOT ALSO ALLOCATING
C SHR AND WRITING INTO THE DATASET. IT IS THE USER'S
C RESPONSIBILITY TO DO THIS.
C PRINT - REQUESTS THAT THE SPFCOPY SYSPRINT DATASET BE PRINTED
C AT THE TERMINAL.
C NOPRINT - REQUESTS THAT ThE SPFCOPY SYSPRINT DATASET BE DUMMIED
C OUT. THIS IS THE DEFAULT IF PRINT IS NOT SPECIFIED.
C THE RETURN CODES AFE
C 20 - THE LSER SIGNALLED ATTENTION, OR
C PDS'iAME' WAS NOT .OUND, OR ..
C 'VOLSER' WAS NOT M)UNTED, OR

C 'PDSNAME' WAS SPECIFIED ONLY WITH A MEMBER NAME, OR
C 'PDSNAME' WAS NOT A PARTITIONED DATASET, OR
C 'PDSNAME' COULD NOT BE CHECKED, OR
C 'PDSNAME' WAS BUSY.
C ALL OTHER RETURN CODES (0, 4, OR 8) ARE FROM SPFCOPY.
C
COMMON FOR ATTR TO MAKE AVAILABLE DCB DATA FOR 'PDSNAME' AFTER THE
CALL TO RECFM (VOLUME IS IN LLL(45) AND DSORG IN LLL(86)).

COMMON/ATTR/ LLL(96)
COMMON FOR ATTN TO PREVENT SHIFTING OF ATTENTION HANDLING CHECKS.

COMMON/ATTN/ ATTENT
C
C STR IS EQUIVALENCED TO STR8 AND WILL CONTAIN SYSIN DATA.

LOGICAL*I LLL, ATTENT, STR(40)
C
C LEN CONTAINS THE 'PDSNAME' LENGTHS.

INTEGER*4 LEN(3)
C
C INTEGER*2 CONTAINS MOSTLY TEXTS FOR ALLOCATION.

INTEGER*2 DS(25)/2,1,0,22*' '/, DD(7)/85,1,8,4*' '/.DDS(8),
* DISP(4)/4,1,1,ZO100/, MOD/Z0200/, SHR/Z0800/, RLSE(2)/13,0/,* PRIM1(5)/IO,I,3,0,256/, PASS(7)/80,I,0,4*' '/, PERM(2)/82,0/.
* CONV(2)/83,0/, VOL(7)i16,1o6,4*' '/, TRK(2)/7,0/, DUMMY(2)/36,0/,
* SEC19(5)/11,1,3,0,4864/, SYSDA(6)/21,1,5,'SY','SD','A'/,
* TERM(2)/40,0/, P0/512/, PRIMR(5)/1O,1,3,0,256/, TRKR(2)/7,0/,
* PRM(4), PARMS/88/, V3340(6)/21,1,5,'V3','34','O'/

C
C ALTNAM IS THE ALTERNATE DDNAME LIST PASSED TO SPFCOPY. SYSIN, SYSPRT,
C SYSUT3, AND SYSUT4 WILL BE THE SYSTEM-GENERATED DDNAMES IN SPFCOPY.

59

- . ....
* *, -:.-- ,* .. *'I.-- .-*' -. ' -..* -,* . ', .. . .. ".. -* * . ... . . . .: .



APPENDIX D

C STR8 CONTAINS THE SYSIN DATA. NM PROVIDES SPACE FOR THE NUMBER OF
C BYTES OF ATNAME.

REAL*8 NM(12),ALTNAM(11)/I1*ZOOOOOOOOOOOOOOOO/.SYSIN,SYSPRT, MEM,
SYSUT3,SYSUT4,STR8(5)/' COPY IN','DD=', ,OUTD','D=',' /,

- - DDNAME
C
C DDS SET UP TO INSURE DDNAME IS ON A DOUBLE WORD BOUNDARY.
C PARMS IS A HALF WORD VARIABLE PRECEDING THE ALTNAM LIST. NM AND PRM
C SET UP TO INSURE PARMS IS ON A HALF WORD BOUNDARY.
C THE FOLLOWING EQUIVALENCES MAKE IT EASY TO REFERENCE THE FOUR FILES
C REQUIRED BY SPFCOPY.

EQUIVALENCE (DD(4),DDNAME),
(NM(2),ALTNAM(1)),(ALTNAM(5),SYSIN),(ALTNAM(6).SYSPRT),
(ALTNAM(1O),SYSUT3),(ALTNAM(11),SYSUT4).(PRM(1),NM(l)),
(PRM(4),PARMS),(STR(1),STR8(1)),(DDS(2),DD(1))

C
COMMENCE PARSE.
C
CALL TO GET 'PDSNAME', A REQUIRED POSITIONAL PARAMETER.

CALL PARDSN(DS(4),MEM,PASS(4),LEN,1,17,'/PDS NAME/')
CALLS FOR VOLUME KEYWORD.

CALL PARKEY(IVOL)
CALL PARNAM('/VOLUME/',1)

CALLS FOR KEYWORDS OLD, RELEASE (RLSE ACCEPTED), AND SHR.
* CALL PARKEY(IREL,./OLD/')

CALL PAlNAM('/OLD/-)
CALL PAANAM( /RELEASE/', '/RLSE/')
CALL PARNAM('/SHR/')

CALLS FOR KEIWORDS PRINT A!D NOPRINT.
CALL PARKEY(IPRINT)
CALL PARNAM('/NOPRINT/')
CALL PARNAM('/PRINT/')

CALLS TO SET VOLUME VALUE IF SPECIFIED.
CALL PARSUB(1)
CALL PARPOS(VOL(4),IERR,'/VOLUME/',1,17,6,3,3,'/VOLUME/')

CALL TO PARSE TO FINALIZE EVERY VARIABLE.
CALL PARSE(IER)

CONCLUSION OF PARSE.

CHECK IF PARSE WAS OK. COMMUNICATE MESSAGE IF NOT.
IF (IER.EQ.0) GOTO 10
LC:100+IER
CALL TSINT(IER,DS)
CALL TSPUT(64,'/COMPRESS PARSE FAILED WITH ERROR = /',DS,'/./')

CONCLUDE COMMAND WITH RETURN CODE.
5 CALL QUIT(LC)

CONSTRUCT ATTENTION HANDLER.
10 ATTENT=.FALSE.

-" CALL ATTEN(ATTENT)
CHECK IF ONLY A MEMBER NAME WAS SPECIFIED. WRITE ERROR MESSAGE IF SO.

IF (LEN(1)) 20,15,25
- 15 CALL TSPUT(64,'/NO DATASET TO COMPRESS./')

17 LC=20
GOTO 5

CORRECT FOR NEGATIVE DSNAME LENGTH (ENTERED QUOTED).
20 LEN(1)=-LEN(1)

CANCEL THIS COMMAND IF 'SYS1.LPALIB' IS THE DSNAME. |I
25 IF (LEN(1).EQ.11.AND.LSTCM(DS(4),'SYS1.LPALIB',11).EQ.0) GOTO 17

60

..." ""..3:!::: i:i::!:.!:_: !: :: : :: :.: : :: " " - -: ::" :- : :: : -- i :



APPENDIX D

CHECK EXISTANCE AND PDS.
CALL RECFM(DS(4),LEN(1),VOL(4),IER)
IF (IER.LT.300) GOTO 30

O-COKUNICATE MESSAGE IF THERE IS A BAD IER.
CALL RECMSG
GOTO 17

CHECK IF DATASET IS A PDS. COMMUNICATE MESSAGE IF NOT.
30 IF (LSTCM(POLLL(86),2).EQ.0) GOTO 35

CALL TSPUT(64,'/'/'.LEN(1),DS(4),
* / IS NOT A PARTITi2NED DATASET./')

GOTO 17
" CHANGE PASS KEY FOR ENTERED PASSWORD WITH DATASET.

35 IF (LEN(3).NE.O) PASS(3)=LEN(3)
IF (LEN(3).EQ.0) PASS(1)=0

CHECK VOLUME KEYWORD. MOVE VOLUME FROM THE ATTR COMMON TO AVOID ANOTHER
CATALOG SEARCH FOR DYN.AMIC ALLOCATION.

IF (IVOL.EQ.O) CALL CHMOV(LLL(45),VOL(4),6) U
COMMUNICATE MESSAGE ABOUT MEMBER IF SPECIFIED.

IF (LEN(2).NE.0) CALL TSPUT(64,'/MEMBER NAME /',LEN(2),MEM,
-- '/ IGNORED./')

CHANGE DISP, ETC, FOR RELEASE, SHR, OR OLD.
GOTO (40.45,50), IREL

50 DISP(4)=SHR
40 RLSE(1)=0

PRIMR( 1)=O
TRKR(1)=0
GOTO 55

45 DISP(4)=MOD
CAREFULLY ALLOCATE IdE DATASET. FIRST CORRECT THE DSNAME TEXT LENGTH.

55 DS(3)=LEN(1)
CALL DYNALC(1,IER,IERR,INFO,O,DD,DSCONV,DISPRLSE,PRIMR,TRKR,

* * PASS,VOL)
CHECK IF ALLOCATION WAS OK. IF NOT SEND MESSAGE.

IF (IER.EQ.0) GOTO 60
CALL DYNALE
GOTO 17

60 IF (ATTENT) GOTO 70
CHANGE SYSIN LINE TO CONTAIN THE SYSTEM-GENERATED DDNAME.

CALL CHMOV(DDNAME,STR(12),8)
CALL CHMOV(DDNAME,STR(27) ,8)

CAREFULLY ALLOCATE SYSIN TO A VIO DATASET, NO NAME NEEDED.
CALL DYNALC(1,IER,IERR,INFO,0,DD,V3340 ,PRIM1,TRK,CONV)

CHECK ON SYSIN ALLOCATION. ERROR MESSAGE IF BAD.
IF (IER.NE.0) GOTO 62

CORRECT THE ALTERNATE DDNAME LIST FOR SYSIN.
SYSIN=DDNAME

CREATE THE SYSIN FILE BY WRITING THE SINGLE LINE.
CALL TSPOPN(IER, 1,DDNAME)
CALL TSPPUT(IER,1,34,STR)
CALL TSPCLS(IER,1)

CAREFULLY ALLOCATE SYSUT3. WRITE ERROR MESSAGES IF BAD.
CALL DYNALC(1,IER,IERR,INFO,O,DD,SYSDA,PRIM1,SEC19,TRK,CONV)
IF (IER.NE.0) GOTO 62

'e. CORRECT THE ALTERNATE DDNAME LIST FOR SYSUT3.
SYSUT3=DDNAME

CAREFULLY ALLOCATE SYSUT4. WRITE ERROR MESSAGES IF BAD.
CALL DYNALC(1,IER,IERR,INFO,O,DD,SYSDA,PRIMI,SEC19.TRK,CONV)
IF (IER.EQ.0) GOTO 63

61



APPENDIX D

62 CALL DYNALE
GOTO 70

CORRECT THE ALTERNATE DDNAME LIST FOR SYSUT4.
63 SYSUT4=DDNAME

CONSIDER SYSPRINT. NO CHECK ON ERROR BECAUSE ERROR RARELY MADE.
IF (IPRINT.LE.1) CALL DYNALC(I.IERIERR,INFO,,DD,DUMMYCONVPERM)
IF (IPRINT.EQ.2) CALL DYNALC(IIERIERR.INFO,ODDTERM,CONV,PERM)

CORRECT THE ALTERNATE DDNAME LIST FOR SYSPRINT.
SYSPRT=DDNAME

CHECK ATTENTION FLAG.
IF (ATTENT) GOTO 70

COMMUNICATE WARNING TO USER.
CALL TSPUT(O,'/COMPRESS STARTED. DO NOT SIGNAL ATTENTION OR THE DA
*TASET MAY BE LOST.!')

COM"ENCE EXECUTION OF SPFCOPY. THE ATTENTION ARGUMENT SET TO IGNORE.
CALL ATTACH(1,LC,'SPFCOPY ',O,PARMS)

CHECK TO SEE IF ATTENTION WAS HIT OR IF PRINT KEYWORD USED. GO TO THE
CLEANUP SECTION IF SO.

IF (IPRINT.EQ.2.OR.LC.EQ.-1) GOTO 70
CHECK IF COMPRESS WAS OK. MESSAGE IF SO.

IF (LC.NE.0) GOTO 64
CALL TSPUT(0,'/''/',LEN(1),DS(4),'/'' SUCCESSFULLY COMPRESSED.!')
GOTO 70

CHECK IF AN ABEND OCCURRED. MESSAGE IF NOT.
64 IF (LC.LT.0) GOTO 65

CALL TSINT(LCDD)
CALL TSPUT%64,'//',LEN(I).DS(4),

COMPIESF ENDED WIT, CONDITION CODE = /',DD,'/./')
COMPRESS ABENDED. EXTRACT HEX :ODE FROM RETURN ARGUMENT.

65 CALL TSHEX(-LC,3,2,DD)
CALL TSPUT(64,'/SYSTEM HEX ABEND CODE FOR COMPRESS = /',DD,'/./')

CLEANUP. FREE DATASET IF SHR WAS NOT USED.
70 IF (IREL.NE.3) CALL DYNALC(2,IER,IERR,INFO,ODS,TRK)

CORRECT RETURN CODE FOR ABEND OR ATTENTION.
IF (ATTENT.OR.LC.LT.O) GOTO 17
GOTO 5
END

62

"I



DISTRIBUTION

ADMINISTRATOR DIRECTOR
DEFENSE TECHNICAL INFORMATION CENTER US ARMY MATERIEL SYSTEMS ANALYSIS
ATTN DTIC-DDA (12 COPIES) ACTIVITY
CAMERON STATION, BUILDING 5 ATTN DRXSY-MP
ALEXANDRIA, VA 22314 ABERDEEN PROVING GROUND, MD 21005

COMMANDER COMMANDER

US ARMY MATERIEL DEVELOPMENT & US ARMY MISSILE & MUNITIONS
READINESS COMMAND CENTER & SCHOOL

5001 EISENHOWER AVENUE ATTN ATSK-CTD-F

ALEXANDRIA, VA 22333 REDSTONE ARSENAL, AL 35809

. DIRECTOR US ARMY MOBILITY EQUIPMENT RESEARCH &
- US ARMY BALLISTIC RESEARCH LABORATORY DEVELOPMENT COMMAND

ATTN DRDAR-TSB-S (STINFO) ATTN DRDME-E
ABERDEEN PROVING GROUND, MD 21005 ATTN DRDME-EC (2 COPIES)

ATTN DRDME-EA (2 COPIES)
USAMSSA ATTN DRDME-EM (2 COPIES)
THE PENTAGON, ROOM DD1034 ATTN DRDME-EE (2 COPIES)
WASHINGTON, DC 20310 ATTN DRCPM-MEP-D (2 COPIES)

ATTN DRCPM-MEP-M (2 COPIES)
CACI ATTN DRCPM-MEP-T (2 COPIES)
ATTN MAILLARK, LOC 02-14 ATTN ATZA-TSM-G (2 COPIES)
1815 NORTH FORT MYER DR FT BELVOIR, VA 22060
ARLINGTON, VA 22209

.,D DIRECTOR
COMMANDER NIGHT VISION & ELECTRO-OPTICS

" US ARMY COMMUNICATIONS & ELECTRONICS LABORATORY
MATERIEL READINESS COMMAND ATTN COMPUTER CENTER

ATTN COMPUTER CENTER FT BELVOIR, VA 22060
FT MONMOUTH, NJ 07703

COMMANDER
COMMANDER US ARMY RSCH & STD GP (EUR)
US ARMY COMMUNICATIONS RESEARCH & ATTN CHIEF, PHYSICS & MATH BRANCH

DEVELOPMENT COMMAND FPO NEW YORK 09510
. ATTN COMPUTER CENTER

ATTN DRDCO-TCS, CENTER FOR TACTICAL COMMANDER
COMPUTER SYS US ARMY TRAINING & DOCTRINE COMMAND

- FT MONMUTH, NJ 07703 ATTN ATCD-DCS, COMBAT DEVELOMENT

ATTN ATCD-AN, ANALYSIS DIR
US ARMY COMPUTER SYSTEMS COMMAND ATTN ATCD-AN, COMBAT SYS BR
BUILDING 1465 ATTN ATCD-AN, METHODOLOGY BR

" FT BELVOIR, VA 22060 ATTN ATCD-C, TELECOM COMD & CON &
COMPTR SYS DIR

COMMANDER ATTN ATCD-C, BATTLEFIELD SYS
US ARMY COMPUTER SYSTEMS COMMAND INTEGRATION BR

* ATTN COMPUTER CENTER ATTN ATCD-IE, INTEL & EW DIR
ATTN TECH LIBRARY ATTN ATCD-IE, ELECTRONIC WRFARE BR

" FT BELVOIR, VA 22060 ATTN ATCD-T, TEST & EVAL DIR

ATTN DCS COMBAT DEVELOPMENTS--ATCD
US ARMY ELECTRONICS TECHNOLOGY ATTN DCS TRAINING-ATTING

& DEVICES LABORATORY ATTN INFO OFFICE--ATID
ATTN DELET-DD ATTN COMM & ELECTRONICS--ATCE
FT MONMOUTH, NJ 07703 FT MONROE, VA 23651

ALMASA COMMANDER
AUTOMATED LOGISTICS MANAGEMENT NAVAL AVIATION LOGISTICS CENTER

*SYSTEMS ACTIVITY CODE 04 B
ST LOUIS, MO 63188 ATTN STEVE BERNSTEIN

NAVAL AIR STATION
PATUXENT RIVER, MD 20670

4$ 634$'

4 * * . . . . . . . . .. ."-. . .



DISTRIBUTION (Cont'd)

COMMANDING OFFICER JACOB & SUNDSTROM, INC
NAVAL TRAINING EQUIPMENT CENTER SUITE 2214
ATTN TECHNICAT LIBRARY ATTN WILLIAM C. JACOB, JR.
ORLANDO, FL 2.13 THE WORLD TRADE CENTER BALTIMORE
COMMANE BALTIMORE, MD 21202

...% COMMANDER
HQ AF DATA AUTOMATION AGENCY TELEDYNE BROWN ENGINEERING
ATTN DATA SYS EVAL OFFICE CUMMINGS RESEARCH PARK

GUNTER AFB, AL 36114 ATTN DR. MELVIN L. PRICE, MS-44
HUNTSVILLE, AL 35807

AFDSC/CC
AIR FORCE DATA SERVICES CENTER TEXAS INSTRUMENTS, INC
THE PENTAGON PO BOX 226015
WASHINGTON, DC 20330 ATTN FRANK POBLENZ

DALLAS, TX 75266
HQ, USAF/SAMI
WASHINGTON, DC 20330 US ARMY ELECTRONICS RESEARCH

& DEVELOPMENT COMMAND
DEPARTMENT OF COMMERCE ATTN COMMANDER, DRDEL-CG
NATIONAL BUREAU OF STANDARDS ATTN TECHNICAL DIRECTOR, DRDEL-CT
ATTN HOWARD BLOOM ATTN PUBLIC AFFAIRS OFFICE, DRDEL-IN
ATTN CARL WENGER
ATTN CITA FURLANI HARRY DIAMOND LABORATORIES
ATTN THEODORE HOPP ATTN CO/TD/TSO/DIVISION DIRECTORS
GAITHERSBURG, MD 20760 ATTN RECORD COPY, 81200

ATTN HDL LIBRARY, 81100 (3 COPIES)
DEPARTMENT OF ENERGY ATTN HDL LIBRARY, 81100 (WOODBRIDGE)
ATTN B. H. AUDET ATTN TECHNICAL REPORTS BRANCH, 81300
ATTN MICHAEL BOLETT ATTN LEGAL OFFICE, 97000
GERMANTOWN, MD 20545 ATTN CHAIRMAN, EDITORIAL COMMITTEE

ATTN ZABLUDOWSKI, B., 47400 (GIDEP)
AMES RESEARCH CENTER ATTN CHIEF, 21000
NASA ATTN CHIEF, 21100
ATTN TECHNICAL INFO DIV ATTN CHIEF, 21200

MOFFET FIELD, CA 94035 ATTN CHIEF, 21300
ATTN CHIEF, 21400

DIRECTOR ATTN CHIEF, 21500
NASA ATTN CHIEF, 22000
GODDARD SPACE FLIGHT CENTER ATTN CHIEF, 22100
ATTN 250, .TECH INFO DIV ATTN CHIEF, 22300
GREENBELT, MD 20771 ATTN CHIEF, 22800

ATTN CHIEF, 22900
DIRECTOR ATTN CHIEF, 20240
NASA ATTN CHOY, S., 48000
LANGLEY RESEARCH CENTER ATTN ROSEN, R., 48000
ATTN TECHNICAL LIBRARY ATTN BLACKWELL, A., 00251
HAMPTON, VA 23665 ATTN BUCKHEIT, S., 00251

ATTN HINE, R., 00251
ENGINEERING SOCIETIES LIBRARY ATTN KIRCHER, K., 00251
ATTN ACQUISITIONS DEPARTMENT ATTN MATTHEWS, J., 00251
345 EAST 47TH STREET ATTN SLEDGE, J., 00251 54
NEW YORK, NY 10017 ATTN VOSS, K., 00251

ATTN WILLIAMS, J., 00251
ATTN HAUSNER, A., 00251 (10 COPIES)

.64

%t

ReI

-S ° , ° . . , . . . . . . . .. ..



FIME

I


